From startups to legacy brands, you're making your mark. We're here to help.
Key Links
Prepare for future growth with customized loan services, succession planning and capital for business equipment.
Key Links
Institutional Investing
Serving the world's largest corporate clients and institutional investors, we support the entire investment cycle with market-leading research, analytics, execution and investor services.
Key Links
Providing investment banking solutions, including mergers and acquisitions, capital raising and risk management, for a broad range of corporations, institutions and governments.
Key Links
A uniquely elevated private banking experience shaped around you.
Whether you want to invest on your own or work with an advisor to design a personalized investment strategy, we have opportunities for every investor.
Explore a variety of insights.
Key Links
Insights by Topic
Explore a variety of insights organized by different topics.
Key Links
Insights by Type
Explore a variety of insights organized by different types of content and media.
Key Links
We aim to be the most respected financial services firm in the world, serving corporations and individuals in more than 100 countries.
Key Links
Last year, J.P. Morgan’s Onyx team won SWIFT’s innovation hackathon with the objective to generate synthetic data while preserving data privacy.
In continuation of that, the winning team has now published a paper [full paper here] on FedSyn framework that details application of three advanced techniques for generating synthetic data sets: Generative Adversarial Network (GAN), Federated Learning and Differential Privacy. The Onyx FedSyn solution combines emerging technologies in the areas of Artificial intelligence/Deep Neural Networks and Privacy-preserving Analytics, making it possible for multiple participants to collaborate and co-create data-driven solutions for financial institutions on a network while maintaining the privacy of their data.
The Onyx team's solution is designed to provide value to banks, financial institutions, payment networks and other entities that require privacy preservation of their customer data.
FedSyn meets blockchain
FedSyn combines synthetic data generation with privacy-preserving Federated Learning:
The Onyx team, who’ve developed Liink, J.P. Morgan’s blockchain network, established that FedSyn can delegate secured aggregation to a consortium-trusted entity in a permissioned blockchain network, such as LiinK – another step forward in the firm’s work to provide network participants with an improved experience through innovative technologies and collaboration.
Liink and collaborative use cases
“As banks and financial institutions look to develop AI based solutions, data scarcity will continue to be a challenge,” says Suresh Shetty, Distinguished Engineer and Onyx CTO. “A Federated and collaborative model to develop synthetic data over a permissioned blockchain network can benefit contributors and the consumers alike.”
“Liink is an enterprise blockchain platform for information exchange that makes payments faster, cheaper and safer for institutions,” says Sushil Raja, Global Head of Liink, Onyx by J.P. Morgan. “Data privacy is an important priority for financial institutions. This research will enable us to explore use cases on the Liink network where data privacy is paramount.”
“The Onyx team’s FedSyn solution implements a modern and emerging machine learning stack that makes it "agnostic" -- easily extendable to other business use cases requiring large amounts of data and the preservation of privacy” says Sudhir Upadhyay, of Onyx Engineering. “FedSyn implementation further delegates its computational burden, making the solution infinitely scalable through "edge computing."
“Although the experiment in the paper was conducted with public MNIST and CIFAR10 dataset, the techniques and algorithms used in the implementation are data agnostic,” Monik R Behera concludes. “This will enable engineering artifacts developed in this exercise to extend to any use case where diversity of data is scattered and distributed across different participants who are willing to collaborate, and at all times with security and privacy.”
[This is not in production, but a continued and evolving effort towards exploring various business opportunities in privacy and collaborative computing]
You're now leaving J.P. Morgan
J.P. Morgan’s website and/or mobile terms, privacy and security policies don’t apply to the site or app you're about to visit. Please review its terms, privacy and security policies to see how they apply to you. J.P. Morgan isn’t responsible for (and doesn’t provide) any products, services or content at this third-party site or app, except for products and services that explicitly carry the J.P. Morgan name.