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Foreword 
We are witnessing the dawn of the AI Age, where it is paramount for all organizations to harness data for 
everything from predictive analytics to Large Language Models (LLMs) and Agentic applications. While the 
largest institutions can achieve considerable success on their own, the power of this technology can further 
be augmented if multiple organizations are able to collaborate on building complex models. Project AIKYA is 
an exciting proof-of-concept (PoC) for Federated Learning (FL), developed through a collaboration between 
Kinexys by J.P. Morgan and the BNY.  

Federated Learning could become a key component of decentralized AI, enabling multiple devices or servers 
to collaboratively train a shared model without exchanging raw data. This approach enhances privacy and 
security by keeping data localized while still benefiting from the collective insights of diverse datasets, making 
it a powerful tool in the decentralized AI ecosystem. 

Project AIKYA demonstrates the power of FL in institutional collaboration, proving that globally aggregated 
models can outperform individual ones by integrating the unique strengths that they each provide. This 
approach makes it a viable option for cross-border payments and other complex financial transactions. 

With faster response times and continuous adaptability, decentralized AI is evolving to handle the dynamic 
challenges of modern finance. These models learn and evolve, improving accuracy and effectiveness in 
detecting new patterns of fraud and other anomalous transactions. Executed within a permissioned, 
controlled network, this PoC showcases the potential of FL in a zero-trust environment, using synthetically 
generated data to simulate real-world scenarios.  

This work is another testament to Kinexys by J.P. Morgan redefining the boundaries of innovation. Our team 
of world-class experts in data analytics and distributed ledger technology continue to reimagine the future 
for J.P. Morgan and the broader banking community. 

 

Umar Farooq 

Global Co-Head of J.P. Morgan Payments 

 

 

 

  



Executive Summary   

 

 5   |   Project AIKYA   
 

Kinexys by J. P. Morgan 

Executive Summary 
This paper presents artifacts from a Proof-of-Concept (PoC) for Federated Learning (FL), through a 

collaboration between Kinexys by J.P. Morgan and the BNY.  It details the premise, setup, and results of the 

experiment, showcasing the effectiveness of FL in enhancing predictive capabilities. 

The PoC, titled Project AIKYA1, evaluates FL as a potential solution for institutional collaboration for mutual 

benefit by enabling the creation of aggregated AI models while adhering to data privacy and security 

requirements.  Experiments revealed that a globally aggregated model, derived from a combination of model 

weights from each participant, performed as well as, or better than, individual models trained locally. The 

federated model exhibited superior anomaly detection coverage by integrating the unique detection 

strengths of the individual local models. 

Considering the open challenges2 around FL in zero-trust environments, this PoC was executed within a 

permissioned, controlled network with trusted participants and utilized synthetically generated data. 

This paper is tailored for industry professionals—including technology, operations, and product specialists—

by demonstrating the potential advantages of FL for appropriate business use cases. 

 

 

 

 

 

 

 

 

 

 

 
1 The word AIKYA originates from Sanskrit, meaning "unity" or "oneness"; emphasizing harmony and collective togetherness. 
2 https://arxiv.org/abs/1912.04977 

https://arxiv.org/abs/1912.04977
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Introduction 
Recent advances in computing power, scalable storage, and software tooling have empowered financial 

institutions to harness historical data for training machine learning (ML) models for a variety of use cases in 

predictive analytics and anomaly detection. These models unlock actionable insights—improving fraud 

detection, personalizing product offerings, and identifying anomalies in payment systems. As a result, 

institutions have invested heavily in building robust data repositories, processing pipelines, and machine 

learning infrastructure. 

Building on these advancements, there is an ongoing opportunity to further improve model efficiency and 

performance by leveraging larger and more diverse datasets. This is particularly relevant in the cross-border 

payments ecosystem, where critical insights are often distributed across geographies and institutions. 

One approach to achieving better model performance could be through the creation of a centralized data 

repository spanning multiple institutions. Howbeit, legal, regulatory, and competitive considerations often 

render this approach impractical. Stringent data privacy laws restrict data sharing—even within different 

regions of the same organization. 

These dynamics highlight an opportunity to enhance machine learning models by exploring alternative 

approaches to data collaboration. Decentralized AI is a class of techniques which have emerged in response 

to this need. Decentralized AI moves away from single central entities, towards distributed systems and 

networks. FL enables decentralization of training and evaluating ML models, while Privacy-Enhancing 

Techniques (PETs) keeps the trustless execution environment secure. 

Federated Learning 
FL is one of the decentralized techniques which enables several decentralized devices or servers to train a 

shared model without sharing respective clients’ data through a suite of aggregation algorithms. FL is 

designed to operate across several heterogeneous edge devices using compute proximal to the data, instead 

of transferring data to a central server thus greatly enhances privacy by minimizing data egress, and reducing 

latency and bandwidth required. 
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Privacy-Enhancing Technologies (PETs)  
Privacy-Enhancing Technologies (PETs) help address privacy risks associated with sharing and processing 

model related data across multiple entities. Even though FL provides client data privacy as the data is 

physically isolated, research3 has shown that it is possible to extract information about the training data 

before or after aggregation. 

Additionally, compliance requirements impose strict requirements on how personal and sensitive data is 

handled. PETs provide stronger auditable privacy guarantees. 

Interested readers are encouraged to refer to the appendix section of this paper for a brief overview of some 

leading PETs and associated public literature. 

The scope of this paper is strictly limited to evaluating the efficacy of FL for jointly training an effective 

anomaly detection model and documenting observations and conclusions from the experiments conducted. 

 

  

 
3 https://www.nist.gov/itl/applied-cybersecurity/privacy-engineering/collaboration-space/blog-series/privacy-preserving 

https://www.nist.gov/itl/applied-cybersecurity/privacy-engineering/collaboration-space/blog-series/privacy-preserving
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Relevant Technology Primers 
The foundation of decentralized, privacy-preserving AI rests on two complementary technology stacks: FL 

and PETs. While federated learning enables multiple participants to collaboratively train AI models without 

exchanging datasets, its security can be significantly enhanced when combined with PETs. Together, these 

technologies offer a robust method for secure, scalable, and regulation-compliant AI—especially critical in 

industries like finance and healthcare, where data sensitivity is paramount. This PoC did not leverage 

PETs. The following sections provide an overview of key frameworks and techniques shaping this space. 

Federated Learning Frameworks 
A growing ecosystem of federated learning frameworks now supports both research experimentation and 

enterprise-scale deployment. Several Open-Source and public FL frameworks exist, some of which are 

enumerated below. 

Flower (Flower) 

Flower4 presents a unified approach to federated learning, analytics, and evaluation of ML models. This 

framework is ideal for a variety of workloads using popular ML frameworks, and a variety of programming 

languages making it ideal for different use cases. 

NVIDIA FLARE (NVFlare) 

NVIDIA Federated Learning Application Runtime Environment (NVIDIA FLARE5) is a domain-agnostic, open-

source, extensible Python SDK that allows researchers and data scientists to adapt existing ML/DL workflows 

to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a 

distributed multi-party collaboration. 

Other Notable FL Frameworks 

• FedML – A research-focused framework supporting simulation and deployment across edge and cloud 

environments. 

• TensorFlow Federated (TFF) – Developed by Google, TFF is ideal for experimenting with federated 

learning in TensorFlow-centric projects. 

• OpenFL – Intel’s federated learning framework designed for secure, auditable, and reproducible 

deployments. 

 

 
4 https://flower.ai/ 
5 https://developer.nvidia.com/flare 

https://flower.ai/
https://developer.nvidia.com/flare
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Opportunity Description 
Payment networks today encounter a wide range of transaction patterns, leading to diverse and sometimes 

unusual patterns. Many of these patterns may be specific to certain geographic regions or demographic 

groups. For instance, an institution primarily focused on Asia might lack the data necessary to identify 

anomalies common in North America. Similarly, institutions serving North America, Europe, the Middle East, 

and Africa may face the same challenge.  

These scenarios present an opportunity for institutions and industries across different regions to collaborate. 

By sharing their model insights—specifically the model weights, rather than private data—they can develop a 

comprehensive shared model. This combined model is likely to detect a wider array of anomalies than any 

single institution could identify using only its own local data.  
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Experiment Details 

Setup 

This section details the setup and execution of the Federated Learning experiment, designed to demonstrate 

its effectiveness and practicality.  

Data 
The experiment used synthetically generated datasets. The following sub-sections briefly describe the 

datasets and anomaly details.  

Dataset Sourcing 

Lacking suitable public anomalous transaction datasets for a payments network PoC, the experiment 

leveraged a fit for purpose synthetic payments dataset generator. This tool is crucial as it generates unique 

training, validation, and evaluation datasets for multiple clients in a single run, injects diverse and complex 

anomaly patterns via rule-based transformations of transaction values, and produces datasets with 

configurable features accurately reflecting real-world payment data.  

Dataset Anomaly Types 

Two rules were implemented to introducing feature perturbations as part of the client dataset generation:  

• Location-Based Anomalies: This feature transformation rule describes a way to perturb values 

where a debtor's estimated geo-location significantly deviates from their expected geographic 

location. This is inspired by the payments system feature where transactions executed in a new 

country, or over a cash counter not transacted over before could be considered as  anomalous.  

• Account Age-Based Anomalies: This feature transformation rule describes a way to perturb a 

transaction debtor's account age, by making it disproportionately young relative to the transaction 

amount. This is inspired by payment system behaviors where transaction limits generally scale with 

account tenure and established creditor-debtor history.  

Exploratory Data Analysis (EDA)  

This section elucidates the payments anomaly dataset structure, exhibit patterns, and demonstrate anomalies. 

The following subsections outline feature attributes and statistical characteristics for features relevant to the 

anomaly detection exercise.  
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Data Generation and Ingestion 

• All datasets were generated by configuring relevant parameters on the dataset generator tool.  

• These datasets were then manually fed to the client data processors on the respective participant nodes 

for ingestion and storage, so that the participant model agent and orchestrator can leverage them for 

evaluation and retraining.  

Data Summary 

Below is an overview of the dataset's structural dimensions, data types, and content for institutions A & B.   

• There are 2 training datasets, specifically designed to train Bank 1’s model on location-based anomalies. 

Similarly, there are 2 training datasets specifically designed to train Bank 2’s model on age-based 

anomalies. Each of these training datasets has 25,000 rows, and between 25% and 35% of the rows in 

these datasets are anomalous.  

• There are 2 “scaling datasets” (one for location-based anomalies and one for account age-based 

anomalies) each for Bank 1 and Bank 2. These datasets are atypical and needed because of differences 

in FL participant data distribution, due to which models cannot effectively learn or identify patterns since 

normalization of data across 2 different entities means different things. Hence, these datasets are fed to 

a standard data scaler across institutions. These datasets are not used for training or evaluation. Each 

scaling dataset has 2,500 rows, and between 25% and 35% of the rows in these datasets are anomalous.  

• There are 10 evaluation datasets (5 for location-based anomalies and 5 for account age and high amount-

based anomalies) each for Bank 1 and Bank 2. These datasets are used to evaluate anomaly detection 

models. Each evaluation dataset has 2,500 rows, and between 25% and 35% of the rows in these datasets 

are anomalous.  

Feature Analysis 

Missing Value Assessment  

To ease the analysis and data pre-processing workflow steps, the data generation tool ensures that no feature 

has missing values.  

Categorical Feature Analysis  

The only categorical value dealt with as part of this experiment is the flag to identify and mark a transaction 

as anomalous. The feature is a value indicating if a transaction is anomalous or not. This is the “target” 

variable, and feature value Y is encoded as 1 for anomalous transactions, and value N is encoded as 0 for 

non-anomalous transactions.  
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Numerical Features Analysis  

Relevant numerical features are summarized in the itemized list below.  

• A collection of Longitude and Latitude values are provided as decimal values between [-90, 90] for 

latitudes and [-180, 180] for longitude which help identify where the user is expected to be and where 

they might be.  

• Debtor’s geographic latitude and longitude capture the expected geo location of the user.  

• Debtor’s tower latitude and longitude captures the recorded tower location of the user.  

• These coordinates are used to calculate the geodesic distance between the Debtor's expected 

location versus their actual location.  

• The distance is used as the input feature to the model to determine if given payment transactions 

are genuine or not.   

• Debtor Amount captures the amount being transferred towards the Creditor from the Debtor. This 

feature is used as is for account age-based anomalies in conjunction with transaction creation timestamp 

to determine if the account is too young to be doing a certain magnitude of transaction. This value is 

chosen at random between 10 million and 20 million for normal transactions and varies between 15 

million and 25 million for anomalous transactions.  

Datetime Features Analysis  

Debtor Account Create Timestamp captures the date and time when the Debtor’s account was created. This 

feature is used to calculate the age of the debtor’s account. This value is used in conjunction with the debtor 

amount to determine if the account is too young to be doing a certain magnitude of transaction. For normal 

accounts, this value is chosen to be at least 12 weeks, but for anomalous looking transactions, this value is in 

the order of a few hours or a couple of days. 

 

Data Visualization 

• The visual characteristics plots are histograms, which show the data distribution of relevant features.  

• The X-axis on all subplots indicates value intervals.  

• The Y-axis on all subplots shows the frequency of a value interval appearing in the feature column.  

• The X-axis on subplot(s) a, b, and d in Fig 1 and Fig 2 are logarithmically scaled to be able to fit large 

values without losing information about smaller ones.  
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• The X-axis on subplot(s) c in Fig 1 and Fig 2 is linear. The axes markers however indicate value in 10 

million. E.g. 1.2 on X-axis in Fig 1.c means 12 million.  

• Fig 1 and Fig 2 show absolute values for subplot(s) c.  

• Fig 1 and Fig 2 show values derived from the raw values for subplot(s) a, b, and d. This is to visualize 

values that the model sees.  

• Subplot a, b shows the distance between expected geolocation vs the recorded tower location.  

• Subplot d show the age of the account in days.  

Bank 1 Data Visual Characteristics 

• Distance features (e.g., Figure 1.a, 1.b) show distinct ranges for anomalous vs. non-anomalous data.  

• Transaction amount and account age distributions (e.g., Figure 1.c, 1.d) exhibit similar ranges and 

patterns across both data types, indicating these features are not primary anomaly detection criteria for 

Bank 1.  

 

 
Fig. 1 - Histogram representations/data distribution of model features for Bank 1 Dataset 
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Bank 2 Data Visual Characteristics 

• Distance features (e.g., Figure 2.a, 2.b) maintain consistent ranges for both data types.

• A significant shift in account age (e.g., Figure 2.c) is observed for anomalous samples, indicating lower

account ages.

• Intentional overlap in transaction amount ranges (e.g., Figure 2.d) for both data types increase model

complexity, encouraging the model to learn anomaly detection based on a combination of high

transaction amount and low account age, rather than solely on amount.

Fig. 2 - Histogram representations/data distribution of model features for Bank 2 Dataset 

Validation 

• To maintain realism, 10% of anomalous data points are mislabeled as non-anomalous (noise), evident as

overlapping peaks in distribution plots above (e.g., Fig. 1.a, 1.b, 2.c, 2.d).

• Data distributions confirm expected synthetic data behavior.
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Model 

Model Architecture and Training 

This experiment employs a fully connected Deep Learning (DL) model developed using Keras for anomaly 

detection.  

Model Preparation and Federated Learning 

The anomaly detection models are Deep Neural Networks (DNNs) that take transaction features as input and 

produce an anomaly likelihood score as output. Neural Networks (NN) were selected due to their ability to 

learn complex anomaly patterns present in transaction data.  

Homogeneous participants initialize local neural networks with pre-trained weights. These local models are 

then trained on local data and shared with an aggregation server. The server aggregates these local models 

via FedAvg and broadcasts the resulting global model back to the participants. Hyperparameters, such as 

learning rate and number of epochs, were meticulously tuned to ensure the most efficient and performant 

models. Models are evaluated using standard classifier metrics: accuracy, precision-recall, and F1-scores.  

Model Hyperparameters 

For training models locally, optimal model performance and accuracy were achieved through 

hyperparameter tuning:  

• Learning Rate : An initial learning rate of 0.01 led to poor performance due to weight oscillation.

Reducing it to 0.001 resulted in steady performance improvement and convergence towards a local

minimum.

• Epochs : Training for 5 epochs significantly improved validation accuracy compared to 1 epoch, with

performance stabilizing beyond the 5th epoch.

• Number of Layers and Neurons : The current model uses 2 hidden layers with 16 and 8 neurons,

respectively. This architecture is sufficient for the synthetically generated data's clear separation

between anomalous and non-anomalous classes; increasing complexity (e.g., 64 and 16 neurons) showed 

no significant performance gain.

• Batch Size : A batch size of 32 was used. This value balances stochasticity from small batches and

potential convergence to suboptimal local minima from full-batch training.

 15   |   Project AIKYAA 
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Model Explainability 

To address the "black box" nature of deep learning models, Shapley Additive Explanations (SHAP) are used 

to quantify input feature importance. SHAP, derived from cooperative game theory, computes Shapley values 

for each feature. These values represent a feature's contribution to the model output, calculated by averaging 

prediction changes across all possible feature subsets. The sum of Shapley values for all features equals the 

difference between the model output and the dataset's average prediction.  

Model Aggregation 

Aggregation strategies are central to FL. The Model Aggregator Service, leveraging the Flower framework, 

supports configurable aggregation strategies. However, this experiment exclusively utilizes Federated 

Averaging (FedAvg) for demonstration. FedAvg is chosen for this experiment for its simplicity. However, 

FedAvg even though simple, is effective, efficient (since clients only send lightweight model updates, or 

gradients), and it generally performs well with Non-IID data, which makes it a  good candidate for exploring 

FL.  

 16   |   Project AIKYAA 
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Network 

System Architecture 

The permissioned experimental FL setup employs a client-server architecture. Network Participants are 

clients, and the Network Server forms the server. Fig. 3 provides a high-level overview of the system 

architecture and components.   

s

Fig. 3 - Network and high-level system architecture 

Network Participant / Client Node Architecture 

Each participant node comprises three services and a database for synthetic data storage, training/evaluation 

metrics, and prediction results.  

• Data Loader and Transformer Service: Consumes and maps ingested data into a client-specific schema,

simulating real-world data pipelines.

• Model Agent Service: Abstracts machine learning models, providing an HTTP-based servable interface.

It is model agnostic, requiring only integration and configuration of the model and its libraries for

serving.

 17   |   Project AIKYAA 
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• Client Orchestrator Service: Acts as a primary entry point, coordinating workflows as a state machine

based on client inputs and system events. It also provides an API for client interactions (e.g., feedback,

aggregation triggers), UI data presentation, and acts as a gateway for authentication/authorization

services.

Network Server Node Architecture 

The Network Server node is composed of two services: 

• Network Orchestrator Service: Manages incoming aggregation requests, queuing them based on client

submissions. It also maintains a view of currently connected clients.

• Model Aggregator Service: Aggregates model weights based on predefined aggregation strategies (e.g.,

FedAvg, FedAdam).

System Interaction and Network Data Flow 

• All client nodes are identical by source and creation method. The differences between each client node

are primarily in application and hardware configurations. Each client node is spawned from the same

container image; thus, client functionality descriptions apply universally unless operationally or logically

differentiated.

• Network-level interactions occur strictly between client orchestrators and the network orchestrator;

peer-to-peer interactions between clients are not supported. No other services are directly exposed

externally.

• When a client joins the network, they send an authorization and join request to the server so that the

network server can register the client for discovery. Additionally, the client can also exhibit its domain

capabilities.

• All requests are client-initiated, and individual clients can opt out of aggregation rounds. The server

processes submitted aggregation requests, matches them, aggregates models, and returns them to the

requesting clients.

 18   |   Project AIKYAA 
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Assumptions 

Data Distribution and Datasets 

• Determining and establishing a global feature distribution securely is an open problem in the context of

FL. This results in problems where datasets can have different scales, and the models do not make

predictions as desired.

• To abate this generated scaling datasets which contain values from both types of anomalies are used for

initializing value scalers and not for training or evaluation purposes. This, however, does not have a

bearing on the results of the model.

Experimental Setup 

• FL allows clients to be heterogeneous in terms of its infrastructure and data sizes. For experiments and

setup discussed as part of this paper, it is assumed that clients are homogeneous, and their datasets are

similarly sized.

Procedure 

Network Bootstrapping 

Network bootstrapping ensures the operational readiness of the infrastructure, network, clients, and server. 

This step ensures network participants, and the server is ready.  

The Server Node services must be initialized first. 

• This sequence, managed by Docker Compose dependencies, begins with the Model Aggregation

Service, followed by the Server Orchestrator (which depends on the aggregation service).

• This order guarantees that client nodes can establish connections, log on, and request current model

weights upon startup, contingent on the Server Orchestrator possessing the latest weights. Once the

server is active, client nodes can start up.

• Client service startup order is critical: the independent Model Agent Service and Data Processing

Service are brought up first.

• This is followed by the Client Orchestrator, which relies on all client components and the Server

Orchestrator being ready.

 19   |   Project AIKYAA 
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Sequence Flow 

All the experiments are entirely driven via the operations UI, ensuring reproducibility and traceability. Prior 

to interaction, sample datasets are loaded onto client nodes for the Data Processor service to ingest and 

reference in the database. Client UIs are accessible via unique URIs for each participant, with client systems 

physically isolated on distinct machines. All subsequent steps assume network bootstrapping is complete. 

The diagram below summarizes the sequence of flow visually. Please refer to the enumerated points for more 

details on each step.  

Fig. 4 Operational sequence flow 

1. Step 1: Each client is pre-seeded with a serialized, offline-trained model based on client-specific

training datasets. The client UI offers two primary operations: loading new evaluation data as a

transaction batch, and triggering model aggregation. Both actions initiate a client workflow, tagging

the batch with a unique network-wide workflow ID.

2. Positive-Result and Negative-Result Baselines Establishment:

a. Step 2: Clients load a batch of payment transactions containing anomaly types the model

was initially trained on (e.g., Bank 1 loads "Batch 1 (Location)" for a location-based anomaly

model; Bank 2 loads "Batch 1 (Account Age)" for an account age-based anomaly model).

 20   |   Project AIKYAA 



Experiment Details 

Kinexys by J. P. Morgan 

b. Step 2: Similarly, clients load a batch of payment transactions containing anomaly types the

model has not encountered (e.g., Bank 1 loads "Batch 1 (Account Age)"; Bank 2 loads "Batch

1 (Location)").

c. Step 3: This triggers a local workflow: the pre-trained model infers predictions on the

evaluation set, generating anomalous transaction predictions. Evaluation metrics and SHAP

values are captured and displayed on the client UI. Expected behavior: strong predictive

capabilities in case a and poor predictive capabilities, with a high rate of false positives and

false negatives case b.

3. Step 4, 5, 6, and 7 (Model Aggregation and Re-evaluation): Clients coordinate to trigger model

aggregation by activating the "Share Insights" button on the client UI's workflow timeline. This action

prompts the Client Orchestrator to gather local client weights for submission to the Server

Orchestrator. The Server Orchestrator awaits aggregation requests from other clients for 5 minutes.

Upon receiving at least two client aggregation requests, the server aggregates the submitted weights

and returns the aggregated model. This initiates a new workflow, where the updated model re-

evaluates the batch that triggered the aggregation. Accuracy and detected anomaly counts are

captured.

4. Convergence to Model Stability: Steps 2-7 is iterated until model convergence, defined by user

satisfaction with discovered anomalies across available evaluation datasets, and a comparable

alignment between predicted and actual anomalous transaction percentages.

5. (Optional) SHAP Value Evolution: Throughout the experiment, clients can optionally record and

evaluate SHAP values to observe model behavior evolution as aggregation progresses.
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Results 

Fig 5. Statistical metrics show improvement in model predictions across multiple anomaly types over several rounds of aggregation 

on Bank1’s Model 
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Fig 6. Statistical metrics show improvement in model predictions across multiple anomaly types over several rounds of aggregation 
on Bank2’s Model  

 23   |   Project AIKYAA 
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Model Performance Analysis 

The plots in Fig. 5 and Fig. 6 capture the performance of the models. 

• The number of rounds of aggregation that the model undergoes is captured on the X-axis.

o Zero (0) aggregation rounds denote the state of the model/ system before aggregation

begins

o All non-zero consecutive number of aggregation markers indicate the number of

aggregation rounds the models have undergone.

• The Y-axis captures binary classification performance metrics (Precision, Recall, F1-score, Accuracy)

between [0.0, 1.0]. Loosely, higher numbers are preferable.

Initial Model Performance (Pre-Aggregation) 

The pre-trained models demonstrate specialized anomaly detection capabilities. Bank 1's model excels at 

identifying location-based anomalies (as seen via high Precision-Recall in the top-left quadrant before 

aggregation), while Bank 2's model is proficient in detecting account-age-based anomalies (high Precision-

Recall in the bottom-right quadrant before aggregation). Conversely, both models exhibit poor performance 

on anomaly types not encountered during their respective local training (Bank 1 on account-age in the top-

right, Bank 2 on location in the bottom-left), indicating a lack of generalization to novel anomaly patterns.  

Impact of Aggregation Rounds 

• Round 1 Aggregation: A significant decline in predictive performance is observed for both anomaly

types across both banks. This performance drop is attributed to the aggregation operation shifting

model weights without sufficiently integrating broader anomaly knowledge, thereby degrading the

models' ability to detect locally known anomalies.

• Round 2 Aggregation & Retraining: Subsequent rounds of aggregation, coupled with local client

retraining on known anomaly datasets, initiate a recovery in predictive capabilities. This process

incrementally imparts global anomaly information while preserving local expertise.

• Convergence: The aggregated model demonstrates convergence in performance, achieving robust

detection of both anomaly types across both client datasets by the fourth round of aggregation.

Insights 

• The drop in performance after a single round of aggregation is because a single round of aggregation

is not enough to gain knowledge about the broader set of anomalies. However, the aggregation

operation shifts the model weights, which impacts the model’s ability to identify anomalies that it

had been trained on before. Hence, a net loss of performance.
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• The aggregation step after 2 rounds of aggregation and retraining starts to impart enough

information on the model about anomalies learnt by Bank 2 model, and the client retraining step

ensures that the local model does not lose its ability to identify known anomalies.

• By the fourth round of aggregation, the model converges successfully. However, this number of

rounds is not fixed. It is highly variable, and is dependent on the complexity of the dataset, model,

and the aggregation strategy chosen. Each client needs to tune their local model parameters via

cross validation methods and then assess the impact of the aggregation step to understand the post

aggregation retraining parameters so that the model oscillates less and converges effectively in as

few rounds as possible.

• It can also observe that simply by aggregating weights, either bank is able to identify anomalies as

well as if the model were trained natively on a dataset which has all the anomalies present.

The observed behavior validates the initial FL hypothesis that after several rounds of aggregation and 

retraining, the model eventually converges and develops the capability of identifying anomalies that each 

client partaking in the aggregation process has learnt. The significant achievement of FL is that Bank 1 and 

Bank 2 did not have to share any information except for their local model weights which are aggregated and 

returned to the Banks.  
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SHAP values and Model Explainability 

Fig 7. Shapley Explainer Values for feature contribution for Bank 1 Model Predictions 
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Fig 8. Shapley Explainer Values for feature contribution for Bank 2 Model Predictions 
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• Fig. 7 and Fig. 8 capture SHAP values for Bank 1 and Bank 2 models respectively, after 4 rounds of

aggregation.

• Upon each evaluation round, the client agent service computes SHAP (SHapley Additive

exPlanations) values from the model's predictions.

• The y-axis of the accompanying violin plot enumerates the model's input features, which are

synthetic derivations from raw feature values as detailed in the data analysis.

• The x-axis represents the correlation score between the feature's contribution and the prediction

being made. This violin plot visualizes the attribution of predictive influence across all input features,

quantifying their directional impact on a given prediction.

• A correlation score approaching +1 indicates a strong positive contribution, -1 signifies a strong

negative contribution, and 0 denotes negligible correlation.
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Future Work
This PoC opens up several directions for future exploration, some of which are stated below. 

Real-World Data Validation 
Applying the same setup to real-world (properly anonymized or consented) datasets will help validate the 

transferability of this approach and further refine model performance across diverse payment patterns and 

anomaly types.  

Scaling to Multi-Participant Networks 
Future iterations could include more than two institutions to simulate real-world payment networks. 

Expanding the number of participants will help validate the scalability and generalizability of federated 

learning in a production-grade financial ecosystem.  

Heterogeneous Technology Stacks and Model-Agnostic Networks 
Testing efficacy of FL model that supports participants with heterogeneous technology stacks and/or 

participants’ model-agnostic network. We anticipant that future participants will likely adopt materially 

different technologies and approaches to their models and hence it will be important to study how 

heterogeneous ecosystems can still achieve commonly acceptable and effective network.  

Multi-Region and Multi-Industry Network 
Given the varying rules and regulations mandated across different regions and industries (e.g. Telecom, 

retailers, hyperscalers, payment networks, banking etc.), we anticipate that FL models built with different 

underlying types of data, format and/or other parameters. It will be important to study how different laws, 

policies, and regulations impact the efficacy of FL model and its network.  

Zero-Trust and Privacy Enhancements 
While this PoC was conducted in a permissioned environment with trusted participants, real-world 

deployments often require secure protocols such as homomorphic encryption, secure multiparty 

computation (SMPC), or differential privacy to ensure data confidentiality even in adversarial settings.  

Benchmarking and Standardization 
Defining standardized metrics for evaluating federated models in anomaly detection use cases would allow 

broader industry adoption. Benchmarks will also assist regulators and partners in assessing the reliability 

and fairness of these models.  
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Federated Model Governance 
Future work could explore governance models around federated training: Who owns the resulting model? 

How are model updates coordinated and versioned? How are conflicts or anomalies in feature 

representations handled?  

Easing Inter-Organization Collaboration and Onboarding 
For multiple organizations to work on a shared FL approach requires necessary legal, compliance, and 

organizational processes particularly with respect to aggregated model ownership, data and/or capability 

ownership, and treatment of Intellectual Property (IP). These processes can scale quickly as the number of 

participants on the FL network increases. One opportunity could be to devise a common and standard 

onboarding framework to ease and expedite the network join timeline, and logistics of managing a wide 

network via collaboration.  

 30   |   Project AIKYA  



Call to Action 

Kinexys by J. P. Morgan 

Call to Action 
The promising results from FL experiments conducted in a controlled environment and a permissioned 

network open up opportunities for broader evaluation and collaboration.  Additionally, even though the 

potential to jointly enhance anomaly detection and classification is attractive, the underlying technology can 

be applied to several business collaboration opportunities without risking data exposure and compromising 

sensitive client data.  

Federated learning may offer a viable and transformative solution. 

This paper encourages industry professionals to:  

• Open-Source FL rules of engagement, memorandum of understanding, RACI (Responsible,

Accountable, Consulted, and Informed), and/or Statement of Work for participants, roles, and

responsibilities.

• Replicate the experiment in their own controlled environments using FL or similar frameworks.

• Participate in future multi-party PoCs to expand the ecosystem.

• Collaborate on open standards for federated learning evaluation and governance.

• Engage in cross-industry dialogue to identify use cases where data privacy, security, and model

performance intersect.
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Disclaimer 
J.P. Morgan 
This paper was prepared for informational purposes with contributions from Kinexys and MLCoE of J.P. 

Morgan. This paper is not a product of the Research Department of J.P. Morgan or its affiliates. Neither J.P. 

Morgan nor any of its affiliates makes any explicit or implied representation or warranty and none of them 

accept any liability in connection with this paper, including, without limitation, with respect to the 

completeness, accuracy, or reliability of the information contained herein and the potential legal, compliance, 

tax, or accounting effects thereof. This document is not intended as investment research or investment advice, 

or as a recommendation, offer, or solicitation for the purchase or sale of any security, financial instrument, 

financial product or service, or to be used in any way for evaluating the merits of participating in any 

transaction. 

BNY 
BNY is the corporate brand of The Bank of New York Mellon Corporation and may be used to reference the 

corporation as a whole and/or its various subsidiaries generally. This material does not constitute a 

recommendation by BNY of any kind. The information is for informational purposes only and is not a 

commitment to deliver any product or service. The product and its features are currently under development 

and are subject to change. The product is not yet available and is still subject to final internal governance and 

approvals. BNY makes no representations or warranties regarding the product, its features, or its availability. 

Any release dates or timelines provided are estimates and are subject to change. BNY reserves the right to 

make any modifications to the product and its features at any time without prior notice. The views expressed 

within this material are those of the contributors and not necessarily those of BNY. BNY has not independently 

verified the information contained in this material and makes no representation as to the accuracy, 

completeness, timeliness, merchantability or fitness for a specific purpose of the information provided in this 

material. BNY assumes no direct or consequential liability for any errors in or reliance upon this material. 

BNY will not be responsible for updating any information contained within this material and opinions and 

information contained herein are subject to change without notice. Trademarks, service marks, logos and 

other intellectual property marks belong to their respective owners. 
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Appendix 
Dataset Generation Tool 
A limited exploration of publicly available anomalous transaction datasets in a hypothetical payments 

network did not yield what would have catered to needs of this experiment. The PoC was conducted using 

datasets generated via a configurable and extensible synthetic payments dataset generator. This custom 

tool provides crucial capabilities, including:  

• Multi-Client Dataset Generation: The script can generate multiple distinct datasets for different

clients in a single run, ensuring each client receives entirely unique training, validation, and

evaluation subsets.

• Rule-Based Anomaly Injection: Anomalies are generated by applying defined rules, which are

essentially transformations that introduce variances in transaction values outside their typical

distribution. By combining these rules with different feature groups, a wide array of anomaly patterns, 

varying in complexity, can be formed quickly, repeatedly, and reliably.

• Configurable Real-World Reflectivity: The generator can produce datasets with known and

configurable features that accurately reflect real-world payment data characteristics, without

requiring extensive rewriting of the core generation mechanism.

• Varied Feature Distributions: It enables the generation of datasets where feature distributions can

be varied across partitions created for different clients, directly addressing the critical non-IID data

requirement for robust FL experiments.

• Real-World Value Integration: Mechanisms are provided to incorporate actual real-world values

into synthetically generated data, enhancing its realism.

The anomaly generation tool can perturb single or multiple features based on defined rules to create various 

anomaly types. It supports layering multiple anomalies within the same dataset, either as independent 

transactions or combined within a single transaction. These anomaly transformers just perturb features from 

sampled rows as anomalous. The anomaly flags are set independently which allowed for the generation of 

anomalies where the values might or might not look anomalous.  
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Privacy Enhancing Technologies 
To further reinforce data privacy and trust in federated learning environments, various PETs could be used 

to safeguard sensitive information throughout the machine learning lifecycle. The following is a subset of 

these technologies:  

Differential Privacy (DP) 

Differential Privacy ensures individual data points remain unidentifiable by introducing controlled noise into 

model updates. This technique protects user data even when model parameters are exposed and is widely 

adopted in FL deployments.  

Secure Multiparty Computation (SMPC) 

SMPC allows multiple parties to perform joint computations without revealing their private inputs. In 

federated learning, SMPC is especially useful for secure model aggregation, enabling institutions to 

collaborate without compromising data confidentiality.  

Homomorphic Encryption (HE) 

HE allows computations to be performed directly on encrypted data. While it remains computationally 

intensive, it holds strong promise for long-term adoption in scenarios where data exposure must be 

completely eliminated, such as in model inference or secure prediction serving.  

Trusted Execution Environments (TEEs) 

TEEs, such as Intel SGX, provide hardware-level isolation for running code and managing data securely. They 

are used to protect both the code and data during model training or aggregation, adding another layer of 

trust in adversarial or semi-trusted settings.  
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