
The development of anti-viral medications and vaccines is typically a lengthy and complex process involving randomized trials, control groups, large populations and a variety of steps designed to demonstrate both efficacy and safety for broad public use. In this section, we walk through the latest news on anti-viral progress, and then do the same for vaccines. We conclude with the potential for convalescent plasma, the Chloroquine controversy and the dubious BCG vaccine premise.

Anti-virals

Let’s start with a discussion of anti-viral history and some challenges to keep in mind:

- Viruses reproduce by hijacking the host’s own biological machinery. Having very few of their own enzymes and proteins, they typically present few opportunities for specific drugs to target
- That might explain why **only 90 anti-virals were ever approved for final use** from 1963 to 2016 out of the thousands proposed in scientific literature (see chart below). And even this number overstates reality since some single agents are counted more than once for each virus they cover, several have been withdrawn due to lack of efficacy and others are rarely prescribed at all
- These challenges might also explain the lack of anti-viral success against **Ebola**, for which numerous therapies were tested (chloroquine, favipiravir, brincidofovir, monoclonal antibodies, remdesivir and convalescent plasma). Ultimately, none proved to be effective despite some agents showing success in non-human primates

History of antiviral drug development

Number of approved drugs

![Graph showing the number of approved antiviral drugs over time](image)

Update on the latest anti-viral and immuno-modulator trials underway

The “Solidarity” trial has been launched by the WHO to determine the effectiveness of Remdesivir, Chloroquine, Lopinavir-Ritonavir and Lopinavir-Ritonavir-Interferon Beta-1a. While such trials can take years to design and conduct, the Solidarity trial may reduce the timeline by 80% by conducting a single global clinical trial. Similar efforts include the “Recovery” trial in the UK and the “Remap-Cap” trial conducted by the University of Pittsburgh. In addition, the US NIH announced the “Accelerating COVID-19 Therapeutic Interventions and Vaccines” partnership (ACTIV), a collaborative effort with 16 pharmaceutical companies to prioritize vaccine and drug candidates and streamline clinical trials.

Chloroquine/hydroxychloroquine

- A complete mess. See pages 7 and 8.

Remdesivir (anti-viral). There are multiple trials underway to determine if Remdesivir is safe and effective against COVID-19. On April 29, 2020, the NIH released a one-page news release on a Remdesivir study conducted at 100 hospitals around the world with 1000 patients. This was the first study with a control group that has shown statistically significant therapeutic benefit against COVID-19. However, the benefit is related specifically to a modest reduction in time to recovery, did not indicate significant mortality benefits, and does not appear to radically change lockdown relaxation risks policymakers are now facing.

- The NIH trial showed an improved time to recovery for the Remdesivir group (11 days) compared to the control group (15 days), a reduction that was deemed to be statistically significant
- The NIH trial involved patients with advanced COVID symptoms (i.e., “lung involvement”). However, since the full results were not released, it’s impossible to know just how severe the cases were (i.e., how many were on ventilators). In effect, the sicker the patient group, the more impressive the Remdesivir results are since most anti-virals are more effective earlier in the course of infection
- Remdesivir is given intravenously rather than orally, so it would only be used in hospital settings, which implies a narrower healthcare impact than drugs that can be delivered on an outpatient basis
- The NIH trial was designed to measure “time to recovery”, and was not meant to measure mortality risk. Even so, the NIH released the mortality results (11% for the control group and 8% for the Remdesivir group) which were described as not being statistically significant differences
- There are additional studies underway on Remdesivir. The NIH trial is good news and unlike HCQ whose thesis fell apart, these results are positive. But this not a “silver bullet” that will dramatically alter the risks that policymakers face as they relax lockdown restrictions, particularly given the 236-person China Remdesivir trial which (in contrast to the NIH trial) found no benefits at all. On the margin, it might free up hospital capacity by accelerating time to recovery, and be used to accommodate the additional patient flow that may result from lockdown relaxation and asymptomatic transmission

4-drug cocktail (lopinavir and ritonavir, ribavarin and interferon beta 1b)

- Hong Kong physicians found that this drug cocktail improved time to recovery from 12 to 7 days and also reduced viral load from day one of the trial. Limitations: included patients with mild to moderate symptoms only; it’s a hospital-only approach, given 3 anti-virals, interferon injections, multiple antibiotics and oxygen therapy; while the viral load declined, it did not drop sharply; and there were no significant differences in outcomes for patients treated 7 days or more after symptom onset. So, a solution primarily for quickly hospitalized patients with mild to moderate symptoms
Favipiravir. Fuji has begun Phase III trials in Japan, after reported clinical trials in China were successful. This drug is an existing flu treatment first approved in Japan in 2014.

Tocilizumab (immuno-modulator). This monoclonal antibody has been approved by the FDA for treatment of rheumatoid arthritis and for cytokine release syndrome. A French study with a control group showed that tocilizumab significantly reduced the number of deaths and the need for ventilator support in participants. In China, tocilizumab is included in COVID-19 treatment guidelines, and randomized clinical trials are underway in China including COVID patients with severe pneumonia.

Ruxolitinib (immuno-modulator). Designed to treat individuals suffering from a cytokine storm. Currently available in the US under the emergency access program, and now entering Phase III trials outside the US.

Ravulizumab-cwbz (immuno-modulator). Phase III trials to be conducted in May 2020 in COVID patients with severe pneumonia or acute respiratory distress syndrome. Preclinical data demonstrated reduced lung inflammation in animals with pneumonia.

Corticosteroids (immuno-modulator) could decrease inflammatory responses in the lungs, but could also lead to delays in viral clearance and increases in secondary infection risk. Guidelines: avoid corticosteroids, since potential harms and lack of proven benefit mean they usually should not be used outside of randomized clinical trials.

Special focus: how might anti-viral medications actually work against COVID-19?

- Some drugs may function as both an anti-viral medication (which interrupts various steps of the viral lifecycle inside cells), and/or as an immuno-modulator
- The latter might be very important, since many people that are dying from COVID-19 are suffering from **sudden multiple organ failure.** Doctors don’t know yet if that’s because of the viral infection itself, or because of immune system damage caused by a “cytokine storm”1. Some drugs being tested are used for auto immune disorders to prevent the cascade of inflammatory damage that accompany them. As a result, it’s possible they inhibit the replication of the virus, and might prevent further immune system damage which causes organ failure
- More trials are required until we know for sure; there was a lot of excitement about certain anti-virals for use against Ebola which didn’t end up showing any efficacy once trials were done, and now it looks like AbbVie’s Kaletra does not work well against COVID-19 either
- To be clear, anti-virals are generally administered to people that are already infected. It is still unclear if they will be able to be widely used prophylactically by people that have a high likelihood of having been infected, such as healthcare workers exposed to heavy viral loads in the workplace, and family members of infected individuals
- Anti-virals have the potential to substantially reduce mortality rates and decrease complications. It is also still unclear if they can significantly slow the rate of infection and hospitalization since they will largely be administered to hospitalized patients. And to be clear, anti-virals do not materially change the rate of whatever community transmission is taking place; vaccines are needed for that

1 One possibility is that patients are dying from ”**cytokine storm syndrome**”, a large, rapid release of cytokines into the blood as a result of viral infections or immunotherapy. From oncology doctors at Washington University in St. Louis: “we believe that there is increasing evidence that cytokine storm syndrome is occurring co-incident with the progressive pneumonia and in severe cases may be driving the pathology and increasing the risk of death above and beyond what would be expected by the viral infection by itself”.
Vaccines

The goal of creating a vaccine to combat an infectious disease appears to have decent odds, at least when compared to success rates of other clinical trials.

However, a COVID-19 vaccine is not a foregone conclusion. The world is still searching for an HIV vaccine; just last month, yet another large-scale HIV vaccine study failed to show efficacy, and no vaccine has been developed for any human coronavirus. First some background, then details on specific vaccine candidates:

- Scientists have to figure out which part of the SARS-CoV-2 virus to target for the vaccine. Its “spike protein” is being used by many candidates, but could result in worse outcomes due to a phenomenon known as “antibody dependent enhancement” (ADE). In ADE, virus clearance pathways typically used by the body’s immune system are hijacked by the virus and end up enhancing viral infection instead. That’s why human clinical trials are vital to the vaccine approval process. The good news is that two front-running vaccine candidates (Oxford and Sinovac) see no sign of ADE in animal studies.

- In recent decades, it has generally taken several years for vaccines to be tested and approved. However, this timeline has been improving. It took 20 months for a SARS vaccine to reach human testing (it was never completed since the virus was eradicated first through non-pharmaceutical intervention), it took only six months to move to testing for Zika virus, and Moderna entered coronavirus testing in humans for its mRNA-1273 vaccine in just two months (animal testing was completely skipped).

- RNA/DNA vaccines, recombinant protein vaccines and cell culture-based vaccines are all options being examined. RNA/DNA vaccines and viral vector vaccines are the most novel and aim to leverage the body’s ability to generate the immunogenic (antibody-provoking) protein. The body would then generate antibodies against the protein to provide protection. To be clear, no RNA/RNA vaccines have been approved to date. Cell culture-based vaccines are the incumbent technology in which the immunogenic protein is generated outside the body in vitro, and injected into the body.

- The genetic sequence of SARS-CoV-2 and its various mutations have been identified in record time. Once the right animals are found for vaccine testing (ferrets might work, and a recent study from the University of Pittsburgh showed antibody responses in mice), toxicity tests in animals often take 3-6 months. After that, Phase I, II and III trials are needed to demonstrate safety and efficacy in humans.

2 Sources include Derek Lowe’s Science Translational Medicine, Johns Hopkins and “SARS-CoV-2 vaccines: status report”, Fatima Amanat and Florian Krammer, Graduate School of Biomedical Sciences and Dep’t of Microbiology, Icahn School of Medicine at Mount Sinai, March 2020.
• **Phase II trials** typically focus on efficacy in different populations (age, gender, pre-existing health conditions and range of medications being taken), all with different dosing schedules, and are designed to set the stage for larger Phase III runs. Some steps can be accelerated by running a lot of simultaneous trials instead of sequential ones, but not all of them

• **Scaling up vaccine production can be challenging.** Even for influenza vaccines, for which many production facilities exist, demand in the case of a pandemic could exceed production capacity. Live-attenuated virus, inactivated virus, recombinant protein, and nucleic acid vaccines all entail completely different production and distribution methods; a commitment by the Gates Foundation to fund 7 vaccine factories at once could help accelerate the timetable

• A COVID-19 vaccine would have to be deployed widely across the globe in all populations. The safety bar for mass vaccination of this type would likely be very high, particularly since the individual case mortality rate is thought to be relatively low in parts of the population.

Here’s some detail on specific vaccine candidates:

• J&J announced a very ambitious timetable for a COVID-19 vaccine that uses the same technology platform as their Ebola vaccine (which took 5 years to complete). This platform is also used by J&J for its Zika, RSV, and HIV vaccine candidates which are currently in Phase 2 or Phase 3 trials. J&J aims to begin Phase I trials in September 2020 with emergency use production as early as spring 2021. They have reportedly identified a lead vaccine candidate (with two backups)

• **Sanofi and GlaxoSmithKline** have accelerated development of a vaccine based on the delivery of SARS-CoV-2 spike proteins into humans, a process designed to engender an antibody response. Their existing Flu-Blok process (approved in 2013) would work as follows: take the genetic sequence of the SARS-CoV-2 virus, splice it into an insect virus and wait for cells from insects (moths, actually) to generate SARS-CoV-2 spike proteins, which are injected into humans. An “adjuvant” of organic chemicals is added to provoke an even stronger immune response (small amounts of aluminum, for example, have been used in vaccines since the 1930’s for this reason). Sanofi/GSK have announced the following timetable: testing in humans in the second half of 2020, and filing for regulatory approval by the second half of 2021. Unlike RNA/DNA vaccine development, applying the Flu-Blok approach to COVID-19 relies on more proven vaccine technology

• **Oxford University** announced a very aggressive timetable for development of a vaccine based on a chimpanzee virus that is altered to be harmless to humans, and which includes genetic components coding for the SARS-CoV-2 spike proteins. As with the other vaccine ideas cited above, the spike proteins of the virus are expected to provoke the body’s immune system into generating the necessary antibodies. Oxford’s Jenner Institute hopes to produce one million doses by the fall if current clinical trials are successful (6,100 volunteers have been recruited into a randomized trial)
 o The Serum Institute of India, one of the world’s largest vaccine companies, actually announced that they will produce 40 million of Oxford’s vaccines now, even before trials are completed
 o The Oxford vaccine was reportedly successful when used against 6 rhesus macaque monkeys

• **CanSino’s** adenovirus vector vaccine, which uses a live unrelated virus to deliver the DNA needed for generation of SARS-CoV-2 proteins (such vector vaccines have been used in human trials for HIV, influenza, Ebola, tuberculosis, and malaria, but none have been approved yet)
BioNTech’s mRNA vaccine candidates (four in total, in partnership with Pfizer) which have been given approval in Germany for use in Phase I/II trials

A Sinovac/Dynavax partnership on the development of inactivated virus vaccine with an adjuvant. Sinovac announced in April that their vaccine produced antibodies in rats, mice and rhesus monkeys; appear to work against ten different mutational strains of the virus; and that they did not see any evidence of antibody dependent enhancement described on page 4

A Novavax vaccine candidate is scheduled to commence Phase I/II trials in May with a preliminary read on Phase III trials in July

Moderna RNA and Inovio DNA vaccine candidates. As mentioned above, these vaccines aim to engineer RNA and DNA to enter human cells which would then generate virus proteins. Inovio also plans to develop a new delivery approach (through the skin via a handheld device) which will require additional regulatory approvals. After completion of its Phase I study (which is primarily designed to assess tolerability rather than whether sufficient levels of antibodies will provide immunity), Moderna recently announced that a Phase II trial with 600 participants will begin shortly, and that the company is finalizing plans for Phase III trials as early as this summer

The entire BCG vaccine thesis is highly questionable; see pages 9-10

Convalescent plasma and monoclonal antibody therapy

Houston Methodist Hospital was the first to receive approval from the FDA to use “convalescent plasma” (or “convalescent sera”) with virus-neutralizing antibodies harvested from recovered patients to treat infected patients and vulnerable populations. This approach was used during the Victorian era before antibiotics to treat meningitis and pneumonia (by injecting bacteria into horses and harvesting horse serum). Highly concentrated convalescent plasma is currently used to treat immuno-deficient individuals against pathogens like measles and mumps.

Like antivirals and vaccines, convalescent plasma applied to COVID-19 will require clinical trials to demonstrate efficacy. In addition, it would not confer long-term immunity (antibody half-lives are just 30 days), and would at best provide a temporary benefit for some period of weeks. However, that might be sufficient when dealing with a pandemic wave of infection over a short period. Convalescent plasma might be difficult to scale and runs the risk of transmission of other undiscovered viruses but could be a vital tool in certain high-risk cases. More background:

- The largest convalescent plasma study from the SARS era involved the treatment of 80 patients in Hong Kong. Patients treated before day 14 had improved prognosis defined by discharge from hospital before day 22, consistent with the notion that earlier administration is more likely to be effective
- In the 2009–2010 H1N1 influenza virus pandemic, convalescent plasma was used to treat individuals with severe infection requiring intensive care. The serum-treated individuals manifested reduced respiratory viral burden, inflammatory cytokine responses and mortality
- Risks include inadvertent infection with another infectious disease agent and reactions to serum constituents, including immunological reactions such as serum sickness. Screens for blood-borne pathogens and blood type matches of donors and recipients can reduce this risk, in principle

3 “The convalescent sera option for containing COVID-19”, Arturo Casadevall, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, March 13, 2020
Like convalescent plasma, **monoclonal antibody therapy** (mAb) involves infusion of antibodies either intravenously or subcutaneously. While convalescent plasma relies on antibodies harvested from recovered individuals, mAb can be harvested from recovered humans, from mice genetically modified to have the immune system of a human being, via genetic engineering or from advanced cell cultures. While mAb are used to treat cancer and autoimmune diseases, few have been developed for infectious diseases. However, mAb worked against Ebola, and Regeneron is expected to enter clinical mAb trials for SARS-CoV-2 this summer. How do mAb work? They are engineered with the goal of being more precise than convalescent plasma: neutralize the infectivity of SARS-CoV-2 by binding specifically to the spike protein that enables it to enter human cells. A likely treatment regimen could contain 2 or 3 different mAbs.

The advantages of mAb: probably available more quickly than a vaccine, and they can be used both as acute therapy for COVID patients and as a prophylactic for front-line health care workers. The disadvantages: higher cost than vaccines; harder to produce at scale since a large dose of recombinant proteins might be needed since your body isn’t making them for you; and temporary (just a few weeks). While a vaccine is preferable given its ability to immediately halt the spread of the disease, mAb may be an important treatment regimen for sick patients and front line workers until a vaccine can be realized.

The collapse of Chloroquine

Remdesivir, Ivermectin (an FDA-approved anti-parasitic drug) and Chloroquine (a widely-used anti-malarial and autoimmune drug) were shown to reduce COVID-19 viral loads in cell cultures with low levels of toxicity to the cell (first chart). But remember, these are cell cultures and not live trials, there are no successful vaccines to-date against any coronaviruses, and there are numerous drugs that were promising in vitro for other infectious diseases and which failed in clinical studies.

![Remdesivir (solid) and Chloroquine (dotted) test results](source: Wuhan Institute of Virology. February 4, 2020.)

![Treatment results of patients with COVID-19](source: Gautret et al, IHU-Méditerranée Infection. March 2020.)

The controversy started with widespread media reports of positive results from a March study from France that combined hydroxychloroquine (HCQ) and azithromycin (a “Z-pack”). The chart above (right) made the rounds on the internet very quickly. **However**, it is now clear that this French study:

- was a non-randomized trial with only 36 patients, and had no discussion of outcomes
- excluded 6 recipients that were not discussed, some of whom of required ventilation and/or died
- started out with higher viral loads in the control group than in the infected patients, which could explain why the control group showed higher infected rates at the conclusion of the study
- imputed more than 1/3 of the control group virus tests rather than measuring them
- sourced its treatment group (unlike the control group) from a single medical center

Coronavirus

EYE ON THE MARKET • MICHAEL CEMBALEST • J.P. MORGAN

The EYE ON THE MARKET • MICHAEL CEMBALEST • J.P. MORGAN section discusses the current market trends and developments related to the ongoing COVID-19 pandemic.
Unlike the French study, there have been other randomized HCQ and Chloroquine studies with control groups:

- The Shanghai Public Health Clinical Center found no benefits from HCQ when comparing the control group to the treatment group.
- A study from Renmin Hospital of Wuhan University did find improvements in “time to clinical recovery” and in pneumonia severity vs the control group when using HCQ.
- A Brazilian study initially planned to enroll 440 severely ill patients to test two doses of Chloroquine (450 mg twice a day for one day and then one a day for four more days, and 600 mg twice a day for 10 days). When 25% of patients in the group developed heart rhythm problems (trends suggested that more deaths were occurring in that group as well), scientists halted that part of the study.
- After two more failed HCQ trials, American biotech pioneer William Haseltine (known for his groundbreaking work on HIV/AIDS and the human genome) concluded that “hydroxychloroquine had no beneficial effect on disease progression or viremia of patients hospitalized for COVID according to two controlled trials from France and China. Both found that hydroxychloroquine induced dangerous heart rhythm abnormalities. The French study recommended against the use of the drug for patients hospitalized for COVID-19.”
- In a large study of nearly 1,400 patients treated at Columbia University, HCQ did not lower the risk of dying or needing a ventilator according to the New England Journal of Medicine.
- The US Veterans Administration reported no benefits and higher death rates for hospitalized COVID-19 patients treated with HCQ when compared to the control group.

Finally, on April 19, an NIH panel recommended against the use of HCQ and azithromycin to treat COVID patients. The panel also recommended against the use of Lopinavir/Ritonavir or other HIV protease inhibitors due to negative clinical trial data, and also recommended against using Interferon because it appeared to make patients with SARS and MERS worse.

Bottom line: results from large-scale randomized clinical trials are the only viable path to an antiviral solution.

Sources available upon request.
The highly questionable premise that the BCG vaccine is a driver of COVID severity

Some healthcare professionals have advanced the premise that the BCG vaccine (a tuberculosis vaccine given to children) somehow explains regional differences in COVID severity. In epidemiology, mathematical biology and medical communities, there’s a LOT of BCG skepticism:

- The WHO has stated that there is no medical evidence to support the BCG thesis.
- The BCG vaccine is used more widely in less developed, younger countries. As severity of COVID-19 is strongly linked to age, population distributions (or vaccines other than BCG) may be much better ways to explain cross-country differences. It’s also an odd time to draw conclusions about cross-country BCG impacts since the virus is now rising more sharply in parts of the developing world that use it.
- Chinese healthcare professionals said they did not see any variation in COVID infection or mortality rates based on BCG vaccination histories.
- Tuberculosis is a bacteria while SARS-CoV-2 is a virus, raising questions as to why a BCG vaccine would work in the first place.
- Some studies supporting the BCG concept didn’t incorporate population heterogeneity, actual vaccination rates or differences in response rates among individuals.
- The key flaw: many BCG studies are derived from quick and dirty cross-country comparisons, and are prone to biases that “confuse the public”. They compare groups rather than individuals, and are much less helpful in identifying what may cause or prevent disease. Cross-country comparisons are simple and don’t require a lot analysis, but are prone to “ecological fallacy” (just because you observe a correlation between average exposure and outcomes does not mean that individuals with greater exposures have a higher/lower risk of disease). We already have in hydroxychloroquine a “stunning example of policy decisions made on the basis of weak evidence”.

If that’s not enough for you, see the chart on the next page.

4 “Bacille Calmette-Guérin (BCG) vaccination and COVID-19”, WHO Science Brief, April 12, 2020
5 The Imperial College of London has made it clear in their research that % of symptomatic cases requiring hospitalization, % of hospitalized cases requiring critical care and case fatality rates closely track age distributions.
6 Epidemiologist Salim Karim, Columbia University Mailman School of Public Health, Adjunct Professor of Medicine at Weill Medical College of Cornell University
7 “Coronavirus and the tuberculosis vaccine”, Dr. M. Noon, University of Goettingen, April 21, 2020
8 “A Skeptic’s Guide To Ecologic Studies During A Pandemic”, Madhukar Pai, Canada Research Chair in Translational Epidemiology & Global Health, McGill University, April 22, 2020
Let’s make it even simpler. Consider reported COVID deaths per million people as a function of BCG vaccine policy (assuming that reported deaths in developing economies are accurate, which is a big “if”). Yes, as shown in the chart, there’s a cluster of low death rates in countries with long-standing BCG vaccine policies [group 1]. But analytically, the entire BCG thesis falls apart in my view for the following three very simple reasons:

- The number of countries that “never had a widespread BCG vaccine policy” [group 6] is extremely small, and its dispersion is very wide
- There are a lot of countries that no longer use the BCG vaccine but only terminated it after 1970 [group 3]. In other words, anyone over the age of 50 in these countries had the BCG vaccine, and many of these countries have high COVID death rates anyway (e.g., France, Spain). Why?
- There’s also a cluster of countries that only instituted BCG vaccine policies after 1970, and their COVID death rates are low as well [group 5]. If that’s the case, how were their older people protected if they didn’t get the vaccine??

Given the unknowable complexity of the body’s immune system, it’s impossible to predict if the BCG vaccine will or won’t work against COVID-19, and any clinical trials conducted will be interesting to watch. I sure hope it works, like every other idea proposed. But to me, the BCG thesis so far is very sloppy science.

COVID-19 deaths per million people as a function of BCG vaccine policy

Each dot represents one of 157 countries with BCG vaccine history

The views, opinions and estimates expressed herein constitute Michael Cembalest’s judgment based on current market conditions and are subject to change without notice. Information herein may differ from those expressed by other areas of J.P. Morgan. This information in no way constitutes J.P. Morgan Research and should not be treated as such.

The views contained herein are not to be taken as advice or a recommendation to buy or sell any investment in any jurisdiction, nor is it a commitment from J.P. Morgan or any of its subsidiaries to participate in any of the transactions mentioned herein. Any forecasts, figures, opinions or investment techniques and strategies set out are for information purposes only, based on certain assumptions and current market conditions and are subject to change without prior notice. All information presented herein is considered to be accurate at the time of production. This material does not contain sufficient information to support an investment decision and it should not be relied upon by you in evaluating the merits of investing in any securities or products. In addition, users should make an independent assessment of the legal, regulatory, tax, credit and accounting implications and determine, together with their own professional advisers, if any investment mentioned herein is believed to be suitable to their personal goals. Investors should ensure that they obtain all available relevant information before making any investment. It should be noted that investment involves risks, the value of investments and the income from them may fluctuate in accordance with market conditions and taxation agreements and investors may not get back the full amount invested. Both past performance and yields are not reliable indicators of current and future results.

Non-affiliated entities mentioned are for informational purposes only and should not be construed as an endorsement or sponsorship of J.P. Morgan Chase & Co. or its affiliates.

For J.P. Morgan Asset Management Clients:

J.P. Morgan Asset Management is the brand for the asset management business of JPMorgan Chase & Co. and its affiliates worldwide.

To the extent permitted by applicable law, we may record telephone calls and monitor electronic communications to comply with our legal and regulatory obligations and internal policies. Personal data will be collected, stored and processed by J.P. Morgan Asset Management in accordance with our privacy policies at https://am.jpmorgan.com/global/privacy.

ACCESSIBILITY

For U.S. only: If you are a person with a disability and need additional support in viewing the material, please call us at 1-800-343-1113 for assistance.

This communication is issued by the following entities:

In the United States, by J.P. Morgan Investment Management Inc. or J.P. Morgan Alternative Asset Management, Inc., both regulated by the Securities and Exchange Commission; in Latin America, for intended recipients’ use only, by local J.P. Morgan entities, as the case may be; in Canada, for institutional clients’ use only, by JPMorgan Asset Management (Canada) Inc., which is a registered Portfolio Manager and Exempt Market Dealer in all Canadian provinces and territories except the Yukon and is also registered as an Investment Fund Manager in British Columbia, Ontario, Quebec and Newfoundland and Labrador. In the United Kingdom, by JPMorgan Asset Management (UK) Limited, which is authorized and regulated by the Financial Conduct Authority; in other European jurisdictions, by JPMorgan Asset Management (Europe) S.à r.l. in Asia Pacific (“APAC”), by the following issuing entities and in the respective jurisdictions in which they are primarily regulated: JPMorgan Asset Management (Asia Pacific) Limited, or JPMorgan Funds (Asia) Limited, or JPMorgan Asset Management Real Assets (Asia) Limited, each of which is regulated by the Securities and Futures Commission of Hong Kong; JPMorgan Asset Management (Singapore) Limited (Co. Reg. No. 197601586K), which this advertisement or publication has not been reviewed by the Monetary Authority of Singapore; JPMorgan Asset Management (Taiwan) Limited; JPMorgan Asset Management Japan Limited, which is a member of the Investment Trusts Association, Japan, the Japan Investment Advisers Association, Type II Financial Instruments Firms Association and the Japan Securities Dealers Association and is regulated by the Financial Services Agency (registration number “Kanto Local Finance Bureau (Financial Instruments Firm) No. 330”); in Australia, to wholesale clients only as defined in section 761A and 761G of the Corporations Act 2001 (Commonwealth), by JPMorgan Asset Management (Australia) Limited (ABN 55143832080) (AFSL 376919). For all other markets in APAC, to intended recipients only.

For J.P. Morgan Private Bank Clients:

ACCESSIBILITY

J.P. Morgan is committed to making our products and services accessible to meet the financial services needs of all our clients. Please direct any accessibility issues to the Private Bank Client Service Center at 1-866-265-1727.

LEGAL ENTITY, BRAND & REGULATORY INFORMATION

In the United States, bank deposit accounts and related services, such as checking, savings and bank lending, are offered by JPMorgan Chase Bank, N.A. Member FDIC. JPMorgan Chase Bank, N.A. and its affiliates (collectively “JPMC”) offer investment products, which may include bank-managed investment accounts and custody, as part of its trust and fiduciary services. Other investment products and services, such as brokerage and advisory accounts, are offered through J.P. Morgan Securities LLC (“JPM”), a member of FINRA and SIPC. Annuities are made available through Chase Insurance Agency, Inc. (CIA), a licensed insurance agency, doing business as Chase Insurance Agency Services, Inc. in Florida. JPMC, JPM and CIA are affiliated companies under the common control of JPMorgan Chase & Co. Products not available in all states.

In Luxembourg, this material is issued by J.P. Morgan Bank Luxembourg S.A. (JPMBL), with registered office at European Bank and Business Centre, 6 route de Treves, L-2633, Senningerberg, Luxembourg. R.C.S Luxembourg B10.959. Authorised and regulated by Commission de Surveillance du Secteur Financier (CSSF) and jointly supervised by the European Central Bank (ECB) and the CSSF. J.P. Morgan Bank Luxembourg S.A. is authorized as a credit institution in accordance with the Law of 5th April 1993. In the United Kingdom, this material is issued by J.P. Morgan Bank Luxembourg S.A.—London Branch. Prior to Brexit, (Brexit meaning that the UK leaves the European Union under Article 50 of the Treaty on European Union, or, if later, loses its ability to passport financial services between the UK and the remaining member of the EEA), J.P. Morgan Bank Luxembourg S.A.—London Branch is subject to limited regulation by the Financial Conduct Authority and the Prudential Regulation Authority. Details about the extent of our regulation by the Financial Conduct Authority and the Prudential Regulation Authority are available from us on request. In Spain, this material is distributed by J.P. Morgan Bank Luxembourg S.A.—Sucursal en España, with registered office at Paseo de la Castellana, 31, 28046 Madrid, Spain. J.P. Morgan Bank Luxembourg S.A., Sucursal en España is registered under number 1516 within the administrative registry of the Bank of Spain and supervised by the Spanish Securities Market Commission (CNMV). In Germany, this material is distributed by J.P. Morgan Bank Luxembourg S.A., Frankfurt Branch, registered office at Taunustor 1 (TaunusTurm), 60310 Frankfurt, Germany, jointly supervised by the Commission de Surveillance du Secteur Financier (CSSF) and the European Central Bank (ECB), and in certain areas also supervised by the Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin). In Italy, this material is distributed by J.P. Morgan Bank Luxembourg S.A.—Milan Branch, registered office at Via Catena Adalberto 4, Milan 20121, Italy and regulated by Bank of Italy and the Commissione Nazionale per le Società e la Borsa (CONSOB). In the Netherlands, this material is distributed by J.P. Morgan Bank Luxembourg S.A., Amsterdam Branch, with registered office at World Trade
Centre, Tower B, Strawinskylaan 1135, 1077 XX, Amsterdam, The Netherlands. J.P. Morgan Bank Luxembourg S.A., Amsterdam Branch is authorised and regulated by the Commission de Surveillance du Secteur Financier (CSSF) and jointly supervised by the European Central Bank (ECB) and the CSSF in Luxembourg; J.P. Morgan Bank Luxembourg S.A., Amsterdam Branch is also authorised and supervised by De Nederlandsche Bank (DNB) and the Autoriteit Financiële Markten (AFM) in the Netherlands. Registered with the Kamer van Koophandel as a branch of J.P. Morgan Bank Luxembourg S.A. under registration number 71651845. In Denmark, this material is distributed by J.P. Morgan Bank Luxembourg, Copenhagen Br, filial af J.P. Morgan Bank Luxembourg S.A. with registered office at Kalvebod Brygge 39-41, 1560 København V, Denmark. J.P. Morgan Bank Luxembourg, Copenhagen Br, filial af J.P. Morgan Bank Luxembourg S.A. is authorised and regulated by Commission de Surveillance du Secteur Financier (CSSF) and jointly supervised by the European Central Bank (ECB) and the CSSF. J.P. Morgan Bank Luxembourg, Copenhagen Br, filial af J.P. Morgan Bank Luxembourg S.A. is also subject to the supervision of Finanstilsynet (Danish FSA) and registered with Finanstilsynet as a branch of J.P. Morgan Bank Luxembourg S.A. under code 29009. In Sweden, this material is distributed by J.P. Morgan Bank Luxembourg S.A. - Stockholm Bankfilial, with registered office at Hamngatan 15, Stockholm, 11147, Sweden. J.P. Morgan Bank Luxembourg S.A. - Stockholm Bankfilial is authorised and regulated by Commission de Surveillance du Secteur Financier (CSSF) and jointly supervised by the European Central Bank (ECB) and the CSSF. J.P. Morgan Bank Luxembourg S.A. - Stockholm Branch is also subject to the supervision of Finansinspektionen (Swedish FSA). Registered with Finansinspektionen as a branch of J.P. Morgan Bank Luxembourg S.A. In France, this material is distributed by JPMorgan Chase Bank, N.A. ("JPMC") in Paris branch, which is regulated by the French banking authorities Autorité de Contrôle Prudentiel et de Résolution and Autorité des Marchés Financiers. In Switzerland, this material is distributed by J.P. Morgan (Suisse) SA, which is regulated in Switzerland by the Swiss Financial Market Supervisory Authority (FINMA).

In Hong Kong, this material is distributed by JPMCB, Hong Kong branch. JPMCB, Hong Kong branch is regulated by the Hong Kong Monetary Authority and the Securities and Futures Commission of Hong Kong. In Hong Kong, we will cease to use your personal data for our marketing purposes without charge if you so request. In Singapore, this material is distributed by JPMCB, Singapore branch. JPMCB, Singapore branch is regulated by the Monetary Authority of Singapore. Dealing and advisory services and discretionary investment management services are provided to you by JPMCB, Hong Kong/Singapore branch (as notified to you). Banking and custody services are provided to you by JPMCB Singapore Branch. The contents of this document have not been reviewed by any regulatory authority in Hong Kong, Singapore or any other jurisdictions. This advertisement has not been reviewed by the Monetary Authority of Singapore. JPMorgan Chase Bank, N.A., a national banking association chartered under the laws of the United States, and as a body corporate, its shareholder’s liability is limited.

JPMorgan Chase Bank, N.A. (JPMCBNA) (ABN 43 074 112 011/AFS Licence No: 238367) is regulated by the Australian Securities and Investment Commission and the Australian Prudential Regulation Authority. Material provided by JPMCBNA in Australia is to "wholesale clients" only. For the purposes of this paragraph the term "wholesale client" has the meaning given in section 761G of the Corporations Act 2001 (Cth). Please inform us if you are not a Wholesale Client now or if you cease to be a Wholesale Client at any time in the future.

JPMorgan Chase Bank, N.A. (JPMCBNA) (ABN 43 074 112 011/AFS Licence No: 238367) is regulated by the Australian Securities and Investment Commission and the Australian Prudential Regulation Authority. Material provided by JPMCBNA in Australia is to "wholesale clients" only. For the purposes of this paragraph the term "wholesale client" has the meaning given in section 761G of the Corporations Act 2001 (Cth). Please inform us if you are not a Wholesale Client now or if you cease to be a Wholesale Client at any time in the future.

This material has not been prepared specifically for Australian investors. It:
may contain references to dollar amounts which are not Australian dollars;
may contain financial information which is not prepared in accordance with Australian law or practices;
may not address risks associated with investment in foreign currency denominated investments; and
does not address Australian tax issues.

With respect to countries in Latin America, the distribution of this material may be restricted in certain jurisdictions. We may offer and/or sell to you securities or other financial instruments which may not be registered under, and are not the subject of a public offering under, the securities or other financial regulatory laws of your home country. Such securities or instruments are offered and/or sold to you on a private basis only. Any communication by us to you regarding such securities or instruments, including without limitation the delivery of a prospectus, term sheet or other offering document, is not intended by us as an offer to sell or a solicitation of an offer to buy any securities or instruments in any jurisdiction in which such an offer or a solicitation is unlawful. Furthermore, such securities or instruments may be subject to certain regulatory and/or contractual restrictions on subsequent transfer by you, and you are solely responsible for ascertaining and complying with such restrictions. To the extent this content makes reference to a fund, the Fund may not be publicly offered in any Latin American country, without previous registration of such fund’s securities in compliance with the laws of the corresponding jurisdiction. Public offering of any security, including the shares of the Fund, without previous registration at Brazilian Securities and Exchange Commission–CVM is completely prohibited. Some products or services contained in the materials might not be currently provided by the Brazilian and Mexican platforms.

References to “J.P. Morgan” are to JPM, its subsidiaries and affiliates worldwide. “J.P. Morgan Private Bank” is the brand name for the private banking business conducted by JPM.

This material is intended for your personal use and should not be circulated to or used by any other person, or duplicated for non-personal use, without our permission. If you have any questions or no longer wish to receive these communications, please contact your J.P. Morgan representative.

© 2020 JPMorgan Chase & Co. All rights reserved.