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Abstract 

The financial services industry recognizes the need for advanced security solutions for user 
identity and transaction processing, while ensuring minimal impact to the online user 
experience.  Users will not accept security controls that encumber the user's daily work. The 
Portal Security Transaction Protocol (PSTP) is a new signature technology that adds 
signature semantics to one-time password technology.  PSTP was developed to secure 
transactions in the financial services industry; however, PSTP may be applicable to 
signatures in other spaces.  PSTP technology provides high signature strength of mechanism 
without requiring asymmetric key pairs deployed to client machines.  PSTP provides 
cryptographic after-the-fact evidence of a transaction event in a secured log.   
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1. Introduction 

JPMorgan Chase Treasury Services is the largest processor of electronic funds globally. On a 
daily basis JPMorgan Chase Treasury Services processes on average more than USD 3 
trillion in its wholesale operations.  For the past five years, JPMorgan Chase used Public Key 
Infrastructure (PKI) [1] signature technology extensively to secure value-bearing 
transactions.  Deficiencies with PKI-based technology impelled JPMorgan Chase to invent a 
new kind of signature technology called the Portable Security Transaction Protocol (PSTP) 
[2].  JPMorgan Chase migrated to PSTP its Treasury Services customers who interact via a 
web browser in order to transfer funds. 

PSTP was developed to secure interactive (browser-based) transactions in the financial 
services industry; however, the technology may apply to transactions in other industries 
such as health care, insurance, or legal services.  The following on-line banking scenario 
presents an example use case.  A user fills out a web-based form deployed to his or her 
browser.  On the form, the user indicates an origin account, destination account, and 
monetary transaction amount.  The user enters authentication credentials, and presses a 
button marked “signature”.  Next, the user uploads the form to the server.  Upon receipt, 
the server validates the signature before processing the transaction.   

PSTP permits both the enterprise and the users to employ the type of authentication 
credential that best fits their respective needs.  In general, market acceptance of 
asymmetric key pairs deployed to servers is good; and acceptance of asymmetric key pairs 
deployed to clients is poor.  SSL and TLS [3], for example, enjoy wide-spread usage 
throughout the Internet when they use asymmetric key pairs deployed to the enterprise’s 
web servers; however, few users install asymmetric key pairs on their browser.  

This difference in PKI acceptance when comparing server and clients is not accidental.  From 
the enterprise’s perspective, the web servers reside in locked data centers; and a dedicated 
staff manages the servers.  The enterprise manages service interruptions through server 
redundancy and disaster recovery.  The enterprise support staff considers maintenance of 
security technology to be within the realm of their job descriptions.  In contrast, users do 
not want to be locked to a single machine.  If the user’s machine fails, or if the user travels, 
then the user wants to simply open a browser on a different machine.  The user’s job 
description does not normally include maintenance of security technology, and as a result 
the user is not willing to invest time and resources. 

Depending upon the relative security of the media used to secure private keying material, a 
PKI has two deployment choices.  Unfortunately, neither choice is a good fit for the users.  
In the case of private keying material stored in non-secured media, e.g., a file, the relative 
strength of the security mechanism is weak.  Any intruder who obtains access to the non-
secured media could potentially obtain a copy of the private keying material without the 
legitimate owner’s knowledge.  Therefore, this deployment choice incurs the relatively high 
cost and overhead of PKI, without enjoying enough of the security benefits. 

On the other hand, the secured media of asymmetric key pair-based hard tokens 
adequately addresses many of the security issues, while raising ergonomic concerns.  When 
a user’s machine is not available, smart card [4] technology does not work unless the user 
can find another smart card-enabled machine.  Dongles [5] and USB tokens [6] may be 
more portable; however, few users would be willing to correctly apply security best 
practices by unplugging the devices from the machines during periods of inactivity.   
Furthermore, despite universally-recognized USB standards, smart card readers, Dongles, 
and USB tokens require special installation steps, and may potentially raise device conflicts.  
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Suppose, a cash manager’s company suffers penalties if the company does not make 
payments by the end of the day.  Unfortunately, on one particular day, the cash manager 
has the bad luck to find that his or her disk drive crashes.  When the cash manager’s inserts 
a smart card, dongle or USB token in a new machine, nothing happens because the new 
machine does not know how to invoke the cryptographic capabilities of the new device.  
Since the cash manager is not necessarily skilled in computer maintenance, he or she calls 
the corporate help desk looking for a solution.  Hopefully, the help desk operator fixes the 
machine before the cash manager suffers financial penalties for the late payments! 

The National Institute of Standards and Technology (NIST) Electronic Authentication 
Guideline [7] defines four levels of authentication, each with increasing levels of security.  
The lowest two levels are levels one and two, and they communicate passwords through 
various channels.  Although financial regulations do not explicitly reference the NIST 
classifications, one may compare to see that levels one and two are insufficient for use in 
Internet banking [8] [9].  Financial regulators normally consider the equivalent of level 
three to be the minimum permissible level.  At level three, one may use any of the following 
three types of tokens: (i) soft tokens that contain a shared secret encrypted by a password 
or symmetric key, (ii) hard tokens that require activation using a password or biometric, 
and (iii)  One-Time Password (OTP) device tokens.   For an OTP device token, 
“authentication depends on a symmetric key stored on a personal hardware device that is a 
cryptographic module…  The device combines a nonce with a cryptographic key to produce 
an output that is sent to the verifier as a password.  The password shall be used only once 
and is cryptographically generated; therefore it needs no additional eavesdropper 
protection” [7].    Each OTP device has a unique cryptographic key, and the server gets a 
confidential copy of this same cryptographic key.  Market examples of OTP device tokens 
are the SecurID [10] and Vasco [11] tokens.  Market acceptance for OTP devices in the 
financial services industry is growing, e.g., [12][13].  Also, the Financial Services 
Technology Consortium’s recent Better Mutual Authentication Project included the goal of 
improving the adoption of OTP technology [14].  A time-based OTP device token, .e.g., 
SecurID, relies upon a synchronized clock shared between the client’s OTP device token and 
the server.  At fixed periodic intervals, e.g., once per minute, the client derives a nonce 
from the current time, and computes an OTP value by cryptographically combining the 
nonce with the key.  In the same interval, the server expects the client to provide an OTP 
value derived from the same time and cryptographic key.  Generally, OTP device vendors 
build proprietary methods to protect against clock drift.  In addition to validating the correct 
OTP value, the server normally implements a scheme which protects against OTP value 
guessing.  If the server receives too many OTP value guesses in a short period, then the 
server temporarily suspends the client’s ability to request authentication events.  

A properly deployed OTP device token requires at least two authentication factors.  The first 
factor, the OTP value, is a transient credential (TC) which is “something you have (for 
example, and ID badge or a cryptographic key” [7].  The second factor, is a static credential 
(SC) which is “something you know (for example, a password)”  [7].  A user does not 
properly authenticate unless he or she provides both a correct transient and static 
credential. 

At level four, NIST’s highest level, NIST permits asymmetric key pair based hard tokens, 
but not soft tokens and OTP devices.  The issue with a soft token is the lack of copy-
protected media.  If a user has a soft token on his or her machine, the user does not know 
whether an attacker possesses an illicit copy.  An OTP device token suffers a different 
deficiency.  “Like hard tokens, one-time password device tokens have the security 
advantage that the token is a tangible, physical object.  Subscribers should know if their 
token is stolen, and the key is not vulnerable to network, shoulder-surfing, or keyboard 
snifffer attacks.  Unlike soft tokens or hard tokens, a session key is not created from the 
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authentication process to authenticate subsequent data transfers” [7].  In other words, OTP 
device tokens have the advantage of copy protected storage media, but the disadvantage is 
that the authentication material does not cryptographically bind to data.  PSTP addresses 
this OTP device deficiency.  As a result, this paper argues that PSTP should elevate the 
security of an OTP device beyond soft tokens up to a level comparable with an asymmetric 
key pair-based hard token. 

PSTP is not the only solution which cryptographically binds transient credential to data.  
However, other solutions are either cryptographically deficient, or ergonomically impractical.  
A cryptographic calculator, e.g., [11] is a handheld OTP device token that accepts input,  
and produces a checksum based upon the input and the transient credential.  The user must 
type the input into the cryptographic calculator, and then read the checksum shown on a 
display.  The user then copies the checksum from the cryptographic calculator onto a form 
on the user’s computer.  Ergonomic considerations limit the number of characters that the 
user may copy from the browser into the cryptographic calculator, and the number of 
characters in the checksum.  Users are not willing to type a long list of transactions into the 
calculator; and they are also not willing to copy the value of a long checksum off the 
calculator onto the computer.  These ergonomic considerations prohibit the use of true 
cryptographic message digests on either the calculator’s input or output.  Therefore, 
although the cryptographic calculator may provide some level of security assurance, the 
calculator cannot provide the same high level of assurance that one would expect at NIST 
authentication level four.   

PSTP is a drop-in replacement for a solution that provides asymmetric key pair based 
signatures.  This means that the application may invoke a signature package through a 
common API that exports asymmetric key pair and PSTP signature syntax.  One may 
configure the package to provide either type of signature without significantly changing the 
invoking application’s software on either the signer (client) or the verifier (server).    

The list below summarizes signing requirements shared by both PSTP-based and client-side 
asymmetric key pair-based signatures. 

• Message Authentication: Using cryptographic means, authenticate the originating 
user of each transaction, while binding the user to the transaction’s data.  

• Message Integrity: Using keyed cryptographic means, ensure that a transaction does 
not change in-transit. A transaction recipient must receive cryptographic assurance 
that the received transaction is bit-for-bit identical to the transaction that left the 
originating user’s machine. 

• Replay Protection: Detect, and reject any occurrence of an unauthorized replay. 

• Consequential Evidence: Provide cryptographic after-the-fact evidence of a 
transaction event in a secured transaction log coupled with a method for validating 
the after-the-fact evidence.  The purpose of the validation is to justify the claim that 
at the time of the transaction, the message was properly authenticated, inherently 
possessed message integrity, and was not an unauthorized replay.  

• Entropy and Algorithms: Observe the Uniform Commercial Code UCC4A [15] which 
mandates “commercially reasonable” security, by enforcing good security practices.  
In the case of cryptography, employ proper entropy and algorithms.  Comply with 
U.S. and international standards (e.g., [16],[17],[18],[19],[20],[21]), and 
commercially reasonable best practices (e.g [7],[16][22][23]). 

• Secured Media: Ensure that the mechanism permits multifactor authentication [7].  
Observe regulatory guidance for strong authentication [8][9] by leveraging the NIST 
ratings for level three or level four authentication methods. 
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A signature is not a technology that addresses all security needs.  The list below presents 
some important security issues that are outside the scope of both PSTP and PKI signatures.  
Normally, applications address these concerns by deploying signatures in concert with other 
security technology. 

• Secrecy:  If an application requires secrecy, then the application may encrypt the 
communication link using cryptographic protocols such as TLS or IPSec [24].  
Alternatively, the application may implement application-layer secrecy through 
protocols such as WS-Security [25]. 

• Anti-Phishing:  Phishing is an attack in which an attacker fools a user into connecting 
to the wrong site.  An application best protects against phishing by locating the 
mitigating control at the first point of contact between the user and the application.  
Therefore, most applications implement anti-phishing controls within the context of 
the login sequence, and as a result, anti-Phishing controls are out of scope of the 
signing technology.  Nevertheless, OTP technology thwarts many of the most 
common Phishing attacks.  If the user enters an OTP into a malware-infected 
machine, then the machine may potentially use the OTP in an unintended manner.  
However, the machine cannot solicit future OTP values from an OTP device token 
without the user’s knowledge.   

• Receipts:  An application may potentially employ signing technology as the vehicle 
for securing transaction receipts.    However, a receipt is a particular use of signing 
technology; and is not an inherent aspect of the technology itself.   

• Denial of Service Protection:  An application may use firewalls, intrusion detection, 
and intrusion prevention to protect against denial of service attacks.  These controls 
are important to an application’s security, but are not the responsibility of the 
signature technology. 

This paper provides a comparison of the terms consequential evidence and non-repudiation.  
This paper has the position that the term non-repudiation has meaning which should have 
remained insular within the cryptographic community.  However, common practices 
mistakenly apply the term non-repudiation to a greater context, where the cryptographic 
meaning of non-repudiation has little importance from either a legal or business perspective 
[26].  The binary concept of cryptographic non-repudiation, for example, ignores the crucial 
issues associated with the media that holds the confidential keying material.  In contrast, as 
opposed to a binary property, consequential evidence is a control with an inherent strength 
of mechanism metric.  This metric takes into account cryptographic assurances, 
cryptographic key protection, logistics security, and possibly other measures.  As in the case 
of most other security technologies, e.g., authentication, intrusion detection, etc., one may 
assess the relative level of assurance provided by the security technologies, and then 
compare.  From this perspective, PSTP compares favorably with PKI. 

The purpose of this paper is to define a signature technology that deploys asymmetric key 
pairs to its enterprise servers without requiring users to accept their own asymmetric key 
pair credentials.  If a particular market is unable or unwilling to accept asymmetric key pairs 
on the client machines, then PSTP provides an excellent signature technology. 

The organization of this paper is as follows.  Section 2 presents a high-level summary of 
PSTP that overviews the mechanism. Section 3 presents an example deployment.  Section 4  
presents an analysis and a consequential evidence comparison between PSTP and PKI. 
Section 5 presents related work, and Section 6 is the conclusion. 
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2. PSTP 

2.1 Signature Description 

A PSTP signature has three components.  The authenticator contains credentials that 
authenticate the signer.  The message integrity component secures data, and the key 
management component fuses the first two components together. 

 

Figure 1: PSTP Signature 

2.1.1 Authenticator 

The Authenticator contains the user’s unique identifier, authentication credentials, and the 
Message Integrity Component.  In order to ensure confidentiality of the user’s 
authentication credentials, PSTP applies a symmetric algorithm against the entire 
authenticator.   

Authenticator: SYM(k1,(USERID,TC,SC,MIC)),  

Notation: 

• SYM(k,y) denotes that symmetric key, k, encrypts information, y for the purpose of 
providing confidentiality.  Specific examples of symmetric cryptography are triple 
DES [18] or AES [27] in CBC mode. 

• k1: Symmetric key 

• USERID: user’s unique identifer 

• TC: TC is the user’s transient credential.  A transient credential is a credential that 
changes frequently.  An example of a transient credential is a One-Time Password 
such as that provided by an RSA SecurID1 [10]. 

• SC: SC is the user’s static credential – a credential that rarely changes, or only 
changes upon the user’s request.  An example static credential is a password. 

• MIC: MIC is the Message Integrity Component described in Section 2.1.2. 

From the exclusive perspective of the authenticator, PSTP would not need to define the TC 
separately from the SC.  Rather, PSTP could simply provide a credential that collects all 
authentication credentials into a single unit.  However, since the Message Integrity 
Component (described below) handles the TC and SC differently, PSTP defines separate 
parameters. 

2.1.2 Message Integrity Component 

The Message Integrity Component (MIC) submits data into a message integrity function 
such as an HMAC [21].  The MIC’s structure allows validation either at the time of the initial 
verification, or after the fact.  One would compute the after the fact validation by combining 
the MIC with information submitted by the user or retrieved from logs.  This external 

                                           
1
 The degenerate case of PSTP has a null transient credential.  In this case, PSTP operates correctly; however, the relative strength 

of the security mechanism is relatively low, and the MIC substitutes the SC for the TC. 



 

© 2007 JPMorgan Chase & Co. Benson, Portable Security Transaction Protocol 9 

information consists of the USERID, TC, the signature’s unique random number, r, 
timestamp, and a full copy of the data that was signed. 

MIC: MI(k2,MD(USERID,TC,r,MD(data))),MD(data) 

Notation: 

• MI: MI(k,z) denotes the keyed message authentication code (message integrity) 
function.  MI, using key, k, applies against data, z.  A specific example of a message 
authentication code function is HMAC computed using SHA-1 [1] or SHA-256 [28] 

• MD: MD denotes a message digest function.   MD(x) is a deterministic function that 
maps bit strings of arbitrary length to bit strings of fixed length such that MD is 
collision-resistant and one-way (noninvertible).  Examples include SHA-1 and SHA-
256. 

• r: r denotes a unique random number.  PSTP expects r to be unique over time, 
server reboots, and multiple machines.  One method of generating r is to compute 
SHA1(n,t,serverDN), where n is a unique number generated through a secure 
pseudorandom number generator; t is the server’s current timestamp, and serverDN 
is the server’s unique distinguished name found in the server’s certificate. If the 
server generates multiple nonces with the same value, t, then each nonce must have 
a different value, n. 

• data: Data represents the original data submitted for a signature.   

• k2: k2 is the symmetric Message Integrity (HMAC) key. 

The MI covers the TC but not the SC due to limitations of consequential evidence validation 
use cases.  A special tool available to a properly authorized administrator may reproduce a 
past value of the TC, if the administrator has access to the OTP’s confidential symmetric 
key.  However, no tool could reproduce the user’s password (SC) at the time of the 
transaction.  So, unless the verifier were to capture the user’s password in a log at the time 
of the transaction (not recommended), an after-the-fact validation would have no access to 
the SC.  Therefore, PSTP splits the authentication credential into two separate components, 
TC and SC, and handles the components differently. 

At runtime, PSTP allows the server to validate a signature in two steps.  The first step 
validates the signature independently of the data; and the second step validates that the 
message digest within the signature covers to the data being signed.  This two-step 
validation process is common to both PKI and PSTP signatures.  If the server’s programmers 
were willing to perform a signature validation in a single step, then the MD(data) outside of 
the scope of the MIC would be redundant because the server could compute MD(data) from 
the data directly in the unified step.  However, pragmatic programming experience with 
signature validation implores the PSTP specification to adopt two-step validation. 

If PSTP were to omit the MI operation, then the specification would yield a message digest 
encrypted by SYM.  Insufficient cryptographic evidence exists justifying that ANSI and ISO 
certified symmetric encryption and message digest algorithms may be combined to yield the 
message digest property.  As a result, PSTP takes the more conservative approach of 
adding the MIC. 

2.1.3 Key Management Component  

The Key Management Component cryptographically fuses the Authenticator and the 
Message Integrity Component into a single atomic unit. 

ASYM(ea,( k1, k2)) 

Notation: 
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• ASYM(e,X):  ASYM(e,X) represents an asymmetric cryptographic operation.  Public 
keying material, e, encrypts information, X, for the purpose of providing 
confidentiality.  

PSTP employs two symmetric keys due to the principle of key separation which stipulates 
“that keys for different purposes should be cryptographically separated” [29].  That is, PSTP 
avoids dual use of a single symmetric key for both confidentiality and integrity.   
Furthermore, the asymmetric operation of the Key Management Component should handle 
all of its protected information atomically.  In other words, any party viewing a PSTP 
signature is in exactly one of the following two states.  Either the party has sufficient 
information to discover both of the symmetric keys; or the party lacks the information 
required to discover either of the symmetric keys.  The atomicity property prohibits the 
state in which a party only has sufficient information to discover one of the two symmetric 
keys. 

Cryptographic literature demonstrates that the notion of atomicity roughly translates to the 
cryptographic term non-malleability [30][31].  RSA Encryption Primitive with Optimal 
Asymmetric Encryption Padding (RSAES-OAEP) [32][33] and Key Transport using Elliptical 
Curve Cryptography as specified in ANSI X9.63 [20] both provide the non-malleability 
property, and as a result, are appropriate for use in the Key Management Component.  

2.2 Signature Protocol 

As illustrated in Figure 2, PSTP is a four-step protocol, where the protocol’s end-points are a 
client that initiates a transaction and a server that resides at the enterprise. 

• Step 1: In the first step, the client downloads from the server two items: a server-
generated unique nonce, r, and the server’s certificate, which contains the server’s 
public key, ea. The client validates the server’s certificate and extracts the public key 
for subsequent use in Step 2. The vehicle by which the client authenticates ea is a 
local matter of a specific implementation and is outside the scope of PSTP. This 
paper adopts identical notation for the server’s public key and certificate, but one 
may determine the notation’s meaning from context.   

• Step 2: The second step is the central cryptographic aspect of the protocol. The 
client transmits a single message that contains the Authenticator, Message Integrity 
Component, and Key Management Component as described in Section 2.1.  

• Step 3: Step 3 is an optional signaling step. The client may optionally ignore this 
signal and proceed to Step 4 immediately. 

• Step 4: The client transmits data to the server. The server cross-references this data 
into the Message Integrity component of Step 2. If the cryptographic seal 
communicated in the Message Integrity Component does not correspond to the data 
transmitted in Step 4, then the protocol raises an exception.  If PSTP exits Step 4 
without an exception, then the server executes the transaction.  If the 
implementation chooses not to adopt the Step 3 option, then Steps 2 and 4 combine. 
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Figure 2: PSTP Overview 

 

2.3 Consequential Evidence 

This section presents an example PSTP architecture that provides consequential evidence. 
The following list presents the architectural components. 

• Signer: The signer holds keying material (e.g., a one-time password device token), 
and creates signatures. 

• Key Handler: The key handler is a trusted party that distributes and manages keys. 
The key handler holds the PSTP asymmetric private keying material, da, and has 
sufficient information to validate OTP authentication requests.  

• Transaction Authorizer: The transaction authorizer is a trusted party that assists 
every transaction. The transaction authorizer logs every transaction into an audit 
trail. 

• Transaction Engine: The transaction engine executes the transaction after the 
system validates a signature. 

Figure 3 illustrates the example architecture. The respective heavy lines between the 
Transaction Authorizer and the Key Handler and Transaction Engine denote two 
bidirectionally authenticated communication links (e.g., TLS) with certificates at both peers. 
The heavy boxes on the Key Handler and Transaction Authorizer highlight the notion that 
these parties are trusted to operate within the bounds of their respective specifications.  The 
signer is a client, and the other architectural components are servers. 
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Figure 3: Consequential Evidence Architecture 

 

The signer creates a PSTP signature which encrypts the key management component using 
asymmetric public key ea. The Transaction Authorizer receives the PSTP signature and 
forwards to the Key Handler. The Key Handler applies its private keying material, da, to the 
key management component to reveal the symmetric keys k1 and k2.  

Next, the Key Handler decrypts the authentication component using k1, and performs the 
required authentication of the OTP. If the authentication succeeds, then the Key Handler 
returns a success code, and returns the integrity component key k2. The Transaction 
Authorizer validates the transaction using the integrity component key k2. If successful, the 
Transaction Authorizer sends the authenticated transaction to the Transaction Engine and 
logs the PSTP signature into a secured audit trail [34].  

One may revalidate a PSTP signature after the fact. First, decrypt the key management 
component. Next, validate the integrity of the audit trail using cryptographic means that are 
outside the scope of this paper.  Next, apply a tool that validates the OTP after the fact. 
Finally, revalidate the integrity component. 

The security of the architecture relies upon the operations of the two trusted parties: Key 
Handler and Transaction Authorizer. The following list highlights some of the most important 
security requirements: 

Key Handler: 

• Securely store keying material. Do not share the keying material with unauthorized 
parties. 

• Participate in keying logistics. Distribute the OTP credentials to the correct parties, 
while maintaining the privacy of asymmetric private keying material, when required. 

• Participate in the revocation mechanism. Do not permit signatures executed from 
revoked keys. 

• Use best security practices for operational procedures such as backups, reboots, etc. 

Transaction Authorizer: 

• Write all received requests to a tamper-evident log. 

• Do not perform any action that would impact the integrity of a received request. 

• Do not provide transactional information to the Key Handler. 

• Do not authorize the Transaction Engine to accept a transaction, unless the 
Transaction Authorizer correctly performs its services.  
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3. Client Deployment 

An OTP device token works best when a user is physically present to copy the OTP value 
(transient credential) from the OTP device token to the computer.  Since the standard for 
remotely deployed human interfaces is a web browser which communicates with a server 
via HTTP or HTTPS, one would expect the most common use cases for PSTP to involve a 
web browser.  After logging in, user interacts with a remotely-located server by viewing web 
pages, and submitting information.  Eventually, the user reaches a point in the session 
where the user needs to perform a transaction with sufficiently high risk to require a 
signature, e.g., transfer funds between accounts.  The user fills out a web-based form, and 
signs the form using PSTP.  The server then validates the transaction. 

3.1 Implementation 

Figure 4 illustrates one example client-side implementation.  The user views a browser-
based form that prompts for all information required to execute the funds transfer, e.g., 
origin and destination account, and the dollar amount.  The form additionally prompts the 
user for authentication credentials and presents a signature button.  When the user presses 
the signature button, the form invokes the “request signature” Javascript routine.  This 
routine collects parameters from the form such as the transaction details and the 
authentication credentials.  The Javascript routine formats the parameters and sends all of 
the parameters to an Applet’s “Sign” function which computes the BASE64-encoded PSTP 
signature.  The applet returns the result to the Javascript; and the Javascript populates the 
form with the PSTP signature result.  Next, the user submits the entire form to the server, 
including the newly populated PSTP signature. 

 

 

Figure 4: Invocation sequence 

A common use case in the financial services industry includes a clerk who submits 
transactions for processing; however, the clerk does not have approval authority.  
Sometimes, the clerk enters the transactions into browser-based forms, and other times, 
the clerk uploads transaction files.  In some cases, the client’s Enterprise Resource Planning 
(ERP) tool automatically uploads the transaction list to the server directly.  Workflow routes 
the list of transactions to one or more authorized approvers at the clerk’s company who 
continue to interact with the server through their browser.  Each of the approvers may view 
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summary information, and drill down to discover the details of individual transactions.  Each 
of the approvers sign the list of transactions using PSTP technology, and the Transaction 
Engine does not execute until successful validation.   

The approver’s form presents the transaction list and a “Sign” button.  When the approver 
presses the “Sign” button, the Javascript collects all of the transaction details from the 
entire transaction list coupled with the static and transient credential, and gives those 
details to the “Sign” Applet.  The Applet creates a message digest over all of the 
transactions, and computes the PSTP signature.  The Applet returns the signature to the 
Javascript which populates the form.  The approver submits the entire form to the server for 
PSTP signature validation. 

This example presents one possible deployment model.  Other possible models also exist.  
For example, one may substitute other types of client-side software for the Applet.  The 
constraint is that the system must have the capacity to compute complex cryptographic 
operations such as asymmetric encryption, symmetric encryption, and message digests.  
Simple execution environments such as Javascript are usually not sufficient. 

The use cases for PSTP and PKI signatures are widespread.  If a remotely located party 
wishes to sign a contract, then the party may potentially leverage signing technology.  A 
financial transaction is one special case of a contract; however, the general case of 
contracts may extend to any type of binding agreement, e.g., court document submission 
[35], customer agreements, or service contracts.  In general, signature technology obviates 
the need to optically scan a document and store the original paper. 

3.2 Sessions 

In an interactive session, the user to first logs in to a web site by presenting a transient and 
static credential.  After interacting through the browser, the user views a form that requires 
a signature, e.g., the user must approve a list of transactions.  At the point of the signing 
event, the user enters a new transient credential; and the user enters same static credential 
that he or she entered at login time.  Since the user may login correctly and subsequently 
step away from his or her machine, the strength of the initial authentication decays over 
time.  Therefore, adding another prompt for authentication credentials at the point of the 
transaction event raises security assurance.   

If malicious software (malware) exists on the user’s machine, then the login event provides 
insufficient information for the malware to execute signatures.  Rather, the malware must 
wait until the user enters the authentication credentials required for a signature before the 
malware may attempt to issue an errant transaction.  In contrast, an asymmetric key pair 
device token is more vulnerable to a potential malware attack.  Immediately after the user 
logs in, the state is that an unlocked asymmetric key pair device token has an electronic 
connection to the user’s machine.  Malware on the user’s machine may interact with the 
asymmetric key pair device token with impunity executing multiple signatures.  Therefore, 
unlike the case of PSTP, an asymmetric key pair device token has the vulnerability that it 
may potentially execute signatures without the user’s knowledge.  However, even in the 
case of PSTP, the user should only operate on trusted machines.  Both OTP and asymmetric 
key pair device tokens are subject to a malware attack in which the malware changes the 
data that the user intends to sign. 

4. Analysis 

This section analyzes PSTP from various perspectives.  The goal of this section is to explain 
intuitive reasoning justifying PSTP.  Assumptions are coarse, and do not represent a formal 
proof of correctness. 

In review of Section 2, a PSTP signature has the following form: 
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SYM(k1,(USERID,TC,SC,MI(k2,MD(USERID,TC,r,MD(data))),MD(data))), ASYM(ea,(k1, k2)) 

4.1 Message Integrity Analysis 

The message integrity analysis argues that receiver does not validate a PSTP signature if an 
attacker modifies the data in-transit. 

4.1.1 Notation 

The argument of correctness uses unprimed lower case notation to indicate the values that 
the user sends, e.g., tc; and the notation uses primed notation to indicate the values that 
the user receives, e.g., tc’.  In some cases, one may distinguish PSTP parameters from 
values by context. 

The notation pstp and pstp’ denote the entire PSTP message at the sender’s point of 
transmission, and the receiver’s point of reception, respectively. 

VALID[pstp’] denotes that the receiver obtains a PSTP message and successfully validates in 
accordance to the PSTP specification. 

VALIDATED(userid’,tc’,sc’) denotes that the receiver obtains the userid’ and the associated 
authentication credentials.  The receiver’s validation of these credentials succeeded. 

4.1.2 Assumptions 

Assumption 1  Authentication 

VALID[pstp’] -> VALIDATED(userid’,tc’,sc’) 

In accordance with the PSTP definition, the server fails to validate a PSTP signed message if 
the server receives invalid authentication credentials.  Therefore, if the server receives a 
valid PSTP signed message, then the authentication credentials must be valid.   

 

Assumption 2  Confidentiality 

k1 ≠ k1’ -> tc ≠tc’ OR sc ≠ sc’ 

We assume that the attacker does not know tc or sc before the sender initiates the PSTP 
operation.  Otherwise, authentication would be meaningless.  We also assume 
confidentiality of SYM and ASYM, so the attacker could not have discovered the values of tc 
or sc in-transit.  If the attacker substitutes value k1’ for k1, then the attacker would not 
have enough information to encrypt the correct tc and sc values.  This assumption embeds 
the fact that the sender uses the correct public key, ea, of the receiver.  

Assumption 3  OTP Authentication 

userid = userid’ AND (tc≠tc’ OR sc≠sc’) -> ~VALIDATED(userid’,tc’,sc’) 

alternatively, 

userid = userid’ AND VALIDATED(userid’,tc’,sc’) -> tc=tc’ AND sc=sc’ 

If the user supplies incorrect authentication credentials, then the server does not validate.  
If the user plays back correct authentication credentials, then one-time password semantics 
prohibit validation of the previously supplied tc’. 

If the attacker breaks another user’s authentication credentials, and substitutes the other 
user’s credential then userid≠userid’. 

 

Assumption 4  Non-malleability 
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k1=k1’ iff k2=k2’ 

Non-malleability provides the concept of atomicity.  Non-malleability ensures that the 
receiver cannot receive only one correct key. 

 

Assumption 5 Nonce Uniqueness 

VALID[pstp’] -> r=r’ 

PSTP operational semantics guarantee uniqueness of the nonce. 

  

Assumption 6 Integrity and Confidentiality 

userid=userid’ AND tc=tc’ AND sc=sc’ AND r=r’ and k2=k2’ AND k1=k1’ -> data=data’ 

An attacker cannot modify the data while keeping the remainder of the parameters 
unchanged.  This assumption embeds the fact that the sender uses the correct public key, 
ea, of the receiver.   

4.1.3 Justification of Message Integrity 

GOAL: VALID[PSTP] AND userid=userid’ -> data = data’ 

The first step of the argument assumes that the recipient correctly validates a PSTP 
signature, and that the signature arrives from the ‘correct’ party.  If an attacker were to 
compromise a different user and steal that user’s authentication credential, then the 
attacker would have the ability to create signatures based upon the attacked user’s stolen 
credentials.  Therefore, in this argument, we assume execution of PSTP in the presence of 
uncompromised credentials with the correct userid. 

 

1 VALID[pstp’] AND userid=userid’ Assumption 

2 VALIDATED(userid’,tc’,sc’)   Assumption 1  Authentication 

3 Suppose k1≠k1’ Supposition 

3a tc ≠tc’ OR sc ≠sc’ Assumption 2  Confidentiality 

3b ~VALIDATED[userid’,tc’,sc’] Assumption 3  OTP Authentication 

 Contradiction 2,3b 

4 k1=k1’   Supposition is false 

8 k2=k2’ Assumption 4  Non-malleability 

9 tc=tc’   Assumption 3  OTP Authentication 

10 r=r’ Assumption 5 Nonce Uniqueness 

11 data=data’   Assumption 6  

 

4.2 Message Authentication Analysis 

Message authentication is a direct result of Assumption 1.  If the recipient validates a PSTP 
signature, then the validation includes a step where the recipient validates the sender’s 
authentication credentials. 
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4.3 Replay Protection Analysis 

Both OTP semantics and the nonce protect against the possibility of replay attacks.   

4.4 Key Lifetime Analysis 

With the exception of the asymmetric key pair owned by the server, the PSTP specification 
exclusively uses one-time keys. This mechanism significantly reduces the risk of key 
compromise. 

4.5 Consequential Evidence Analysis 

The mechanism described in Section 2.3 explains how one may store the PSTP signature in 
an audit trail, and subsequently validate the signature.  These observations satisfy the goal 
of providing consequential evidence. 

4.6 Entropy and Algorithms Analysis 

Every aspect of the specific instance of PSTP defined in Section 2 conforms to an approved 
international standard, with the exception of the authentication mechanism, which may be 
proprietary, e.g., SecurID. 

4.6.1 Approved by ISO or ANSI 

• RSA encryption used for key transport: [23] (alternatively Eliptical Curve Cryptography [20]) 

• Triple DES (3DES): [18] 
HMAC: [21] 
SHA1: [1] 
Public Key Cryptography including certificate structures: [19] 

4.6.2 Approved by IEEE, PKCS 

RSAES-OAEP: [22], [32] 

4.6.3 Draft Status 

ANSI X9.44: [17] 

ANSI X9.44 specifies a key transport mechanism for the financial community. ANSI X9.44 
protects against unauthorized change of the transported keys, and ensures that the keys 
transport as a block (i.e., an attacker cannot compromise or modify only one of the keys). 

OASIS Digital Signature Standard (DSS): [36] 

Key entropy is an important requirement.  Any cryptographic facility that does not have the 
inherent flexibility to incorporate best cryptographic algorithms should not be considered for 
use in the space of wholesale financial services due to the high monetary value of 
transactions.  PSTP does not limit key entropy or key length in its asymmetric, or symmetric 
algorithms.  PSTP does not mandate a specific message digest or HMAC size. 

4.7 Secured Media Analysis 

PSTP operates in the context of Secured Media deployed to users, i.e, OTP device token.  
The authentication technology requires no electronic connection between the media and the 
user’s machine.  The impact is good user mobility between machines, easy installation, and 
low hardware support costs.  Malware on the user’s machine cannot initiate a signature 
event without the user’s knowledge. 

In contrast, a hard token that holds an asymmetric key pair requires the user to enter an 
authentication credential such as a password to unlock the token.  Subsequently, the token 
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and any potential malware on the user’s machine may freely communicate without the 
user’s knowledge.  Therefore, the asymmetric key pair hard token may potentially 
participate in signatures without the user’s knowledge. 

5. Related Work 

5.1 Comparison of Consequential Evidence with Non-Repudiation 

This section discusses three perspectives of the term non-repudiation, and contrasts these 
perspectives with the concept of consequential evidence.    

• Technical non-repudiation:  The common technical definition of non-repudiation 
directly references asymmetric cryptography, as in the case of the following U.S. 
National Institute of Standards and Technology (NIST) definition. 

Non-repudiation [sic] is a service that is used to provide assurance of the 

integrity and origin of data in such a way that the integrity and origin can be 

verified by a third party. This service prevents an entity from successfully 

denying involvement in a previous action.  Non-repudiation [sic] is supported 

cryptographically by the use of a digital signature that is calculated by a 

private key known only by the entity that computes the digital signature [16]. 

• Business non-repudiation:  Business non-repudiation takes into account all artifacts 
of a signature that may impact the business.  Example artifacts may include 
operating assumptions, cryptographic services, and legal council.    

• Legal non-repudiation:  Legal non-repudiation comprises the various national and 
international laws pertaining to signatures. 

Consequential evidence is an artifact of cryptography used to provide after-the-fact 
evidence.  The business or legal frameworks may reference this artifact when assessing 
non-repudiation.  The degree to which the businesses or the courts trust the consequential 
evidence artifact may be case dependent. 

The NIST definition is not sufficient for guaranteeing a significant degree of business non-
repudiation because the definition fails to mention important relevant security concepts.  
For example, the NIST definition does not reference the strength of mechanism in the 
storage media; and the definition does not mention the timestamp.  With respect to the 
timestamp, consider the sequence of events illustrated in Figure 5. 

 

sign revoke repudiate 

repudiate sign revoke 

Step 1 Step 2 Step 3 

User A 

User B 
 

Figure 5: PKI Signature without timestamp sequence of events 

In Step 1, User A signs a transaction.  In Step 2, user A claims an event which requires a 
certificate revocation.  In Step 3, User A claims to repudiate the signature created in Step 1.  
User B reverses the order of the operations performed in steps 1 and 2.  That is, first User B 
revokes his or her certificate, and second, User B signs by applying the asymmetric private 
key associated with the revoked certificate.  At the time of Step 3, a judge should disallow a 
repudiation claim of User A’s signature because User A signed using a valid certificate.  
However, the judge should allow User B’s repudiation claim, because User B signed using a 
previously revoked certificate.  Unfortunately, the judge does not have sufficient information 
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to distinguish between the two sequences. 

If a judge were to compare the relative strength of mechanism of a PKI-based signature 
that has no trusted timestamp, against a PSTP-based signature that leverages an OTP 
device token based upon time, e.g, SecurID, then which signature merits the superior 
evaluation?  In comparison, when validating a historical signature using PSTP, a verifier may 
produce an OTP value by deriving a nonce from a historical timestamp, and 
cryptographically combining the nonce with the appropriate key.  The verifier may compare 
this OTP value against the one contained in the PSTP signature log.  As a result, an OTP 
device based upon time has an assumed timestamp.  This comparison is pertinent to 
common industry practice today, because TSAs do not yet enjoy widespread acceptance. 

If one were to patch the security hole in PKI by adding a TSA, then a judge must evaluate 
the relative trustworthiness of the TSA’s operations when assessing the strength of 
mechanism of a PKI-based signature.  The timestamp authority’s evaluation may take into 
account an audit, e.g., SAS 70 [37], testimonies of some of the trusted timestamp 
authority’s key employees, TSA operating assumptions [38] and possibly other artifacts.  
These artifacts would be similar in nature to the artifacts used to justify a PSTP signature.  
Since a PKI’s timestamp authority has the ability to manipulate time, it is an ultimate 
authority that only needs to trust itself.  From either a business or legal perspective, if one 
could show that the TSA deviated from its operating assumptions, then any PKI-based 
signature created with the assistance of the TSA might be subject to repudiation. 

Furthermore, in order to belie credence in a PKI-based signature, a judge must trust the 
service which operates the Certificate Authority.  This means that the Certificate Authority, 
for example, must not forget to reference revoked certificates on its certificate revocation 
lists or OCSP responder [39]; distribute certificates to the wrong parties; disclose the root 
certificate’s private keying material to unauthorized parties; fail to secure backups; fail to 
transfer the latest state of certificate revocation lists to a disaster recovery center; 
incorrectly authorize subordinate root certificates; or execute other unauthorized actions 
either erroneously or maliciously.  The artifacts that would be needed to claim correct 
operations of the Certificate Authority may be quite complex!  Presumably, the US Federal 
government agrees with this position because it certifies particular commercial PKI 
providers, thus implicitly implying that signatures created using untrusted PKI providers 
might be subject to business or legal repudiation [40].   

Figure 6 presents a comparison of the PKI and PSTP infrastructures from an operational 
perspective.  The Figure depicts the PKI components above the dotted line, and the PSTP 
components below the dotted line.  In order to believe in a consequential evidence claim, 
the signer, verifier, and judge must “trust” that the components highlighted in the heavy 
boxes operate in accordance to their specifications.  That is, in the case of the PKI, the 
parties must trust the Certificate Authority and Timestamp server; and in the case of PSTP, 
the parties must trust the Key Handler and Transaction Authorizer. 
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Figure 6: Consequential Evidence Comparison 

Should a judge assess greater credence in the consequential evidence claims of the PKI or 
PSTP?  The answer to this question may be more dependent upon the specific artifacts, than 
the mathematics of cryptography.  If the judge questions the operations of any of the 
trusted parties, then the claims of consequential evidence could be weak from either a 
business or legal perspective. 

From a legal perspective, examples exist in which cryptographic strength may be irrelevant.  
For example, in the United States “E-SIGN does not prescribe requirements pertaining to 
activities that are governmental (as opposed to business, consumer, or commercial) in 
nature, including activities conducted by private parties principally for governmental 
purposes.  One example of an activity that is governmental is census reporting and related 
requirements”  [41].  So, in the US, one may use neither PKI, PSTP, or any other kind of 
electronic signature for governmental activities such as census reports.  Furthermore, in 
accordance with common law, “if a person denies that a signature is his, the relying party 
has to prove that it is truly that of person denying it.  Onus of proof is on person seeking to 
rely on the signature” [42]. 

One may improve the strength of mechanism of consequential evidence using security 
mechanisms outside the scope of cryptography, such as separation of duty.  In the case of 
PSTP, an enterprise may potentially rely upon independently trusted services such as those 
provided by the Verisign authentication service bureau [43] or the RSA Authentication 
Service [44]. Alternatively, the enterprise may operate its trusted services internally, but 
separated from the remainder of the enterprise, e.g., the Transaction Engine, by a Chinese 
Wall [45].  Proposed standards such as the OASIS Digital Signature Standard Signature 
Gateway Profile [46] may provide the standards which help facilitate separation of duty 
within PSTP. 
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5.2 Comparison with Other Protocols 

This section compares PSTP with other, similarly constructed protocols. 

5.2.1 S/Mime and SET, PGP, and PEM 

The Internet Engineering Steering Group tentatively approved the use of RSAES-OAEP for 
S/Mime in April, 2003 [47].  The draft S/Mime standard specifies a protocol that has some 
structural similarities to PSTP because it negotiates a symmetric key encrypted with an 
asymmetric key.  However, any signature created using S/Mime requires an additional 
client-side asymmetric key pair.  If one does not elect to use the S/Mime option for 
signatures, then the protocol lacks the equivalent of PSTP’s MIC, and as a result would have 
no cryptographically-strong integrity guarantee.  PGP [48] and Privacy Enhanced Mail [49] 
have the same general form as S/Mime. 

Secure Electronic Transactions (SET) [50] was a standard for signed retail payment 
transactions proposed in the 1990s.  SET requires a client-side asymmetric key pair.  SET 
failed in the market because its infrastructure (including client-side asymmetric key pairs) 
was too complex for a general, retail environment. 

5.2.2 Key Exchange without asymmetric Keys deployed to clients 

The most common usage of TLS relies upon an asymmetric key pair deployed to a server, 
exclusively.  Common usage authenticates the client by sending a password, or other 
authentication credential through a previously-established TLS session.  Although this 
technique authenticates the client, it does not provide signature semantics with 
consequential evidence.  IPSec’s draft XAuth mode [51] augments IPSec by authenticating 
the user as well as the device; however, IPSec does not provide signature semantics. 

Other schemes for creating sessions based upon passwords deployed to clients have been 
proposed.   Halevi [52] creates sessions where the server has an asymmetric key pair and 
the client has a password.  Kolesnikov [53] identified security deficiencies which were 
corrected by introducing a long password.  A long password has the property that it adds 
cryptographic entropy; however, it is too long for a user to memorize or type into a 
browser-based form.  A long password suffers many of the same ergonomic disadvantages 
exhibited by an asymmetric key pair.  That is, if the storage media is not properly secured, 
then the long password is subject to theft without the owner’s knowledge.  On the other 
hand, if one stores a long password on a smart card, dongle, or USB token, then the user 
must execute a device installation step and cannot easily move between machines. 

In comparison of authentication credentials, a password has the advantage that it requires 
no storage media; however, its authentication strength is low and it does not introduce 
good cryptographic entropy.  An asymmetric key pair has the advantage of that it exhibits 
good cryptographic attributes; however, its storage media introduces ergonomic concerns.  
A one-time password has the advantage that it is an authentication factor with good 
strength of mechanism; however, it does not introduce entropy or bind data to the OTP 
value.  PSTP addresses the deficiencies of one-time passwords.  One cannot simply 
substitute a password-based key agreement scheme for PSTP because the password-based 
schemes usually rely upon properties of authentication credentials that do not possess 
either the same security or ergonomics as OTP devices.  

5.2.3 HMAC with Static Key Distribution 

One could potentially physically distribute HMAC keys via a hardware security module to 
numerous clients. However, the key distribution method would be manual and cumbersome. 
These difficulties would prevent frequent HMAC key distribution, and as a result, would 
encourage re-use of HMAC keys and long key lifetimes. 
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5.2.4 Software Safe 

A software safe is a file which contains asymmetric private keying material encrypted using 
a symmetric key.  A user authenticates to a server using an ergonomically-acceptable 
means such as an OTP.  After validating the authentication event, the server returns the 
decryption key of the software safe.  The user applies the decryption key to the software 
safe, extracts the asymmetric private keying material, and executes conventional 
asymmetric signatures. 

A software safe and PSTP share a similar advantage: both mechanisms provide signature 
semantics, yet allow the user to authenticate using an OTP device token.  PSTP, however, is 
much more secure.  An OTP device token’s confidential key never leaves the perimeter of 
the OTP device token on the client machine.  On the other hand, once a software safe 
decrypts, the safe’s contents may be copied.   

During the period that a user physically possesses an OTP device token, the user knows that 
no one else can authenticate or sign on the user’s behalf, without the user’s knowledge.  A 
software safe provides a lower level of assurance because malware on the user’s machine 
could potentially copy the software safe’s contents or encryption key to an unsecured 
location.  While one should be careful when executing a signature in an untrusted 
environment such as an Internet Café, the vulnerabilities of software safes may be 
prohibitive. 

5.2.5 Cryptographic Calculator 

As described in the introduction, a cryptographic calculator shares with PSTP the ability to 
bind an OTP value to data.  However, the cryptographic calculator’s ergonomic concerns 
force the mechanism to rely upon checksums that do not have a sufficient number of bits to 
qualify as a proper cryptographic message digest. 

5.2.6 Multi-Key Cryptography 

A multi-key cryptographic system [54] operates in a similar manner to a conventional two-
key asymmetric PKI.  The difference is that the multi-key system splits the private keying 
material into multiple parts.  When executing a signature, each of the parties which own a 
part of the private keying material applies a cryptographic transformation.  The resultant 
signature is identical to one which would have been created using conventional, two-key 
asymmetric cryptography.   

The primary advantage of a multi-key cryptographic system is that it provides the 
opportunity for the validating party to rely upon a trust relationship with one of the signing 
parties.  As long as this trusted signing party refuses to perform the requested 
cryptographic transformation unless it knows that the client’s certificate was not revoked, 
then the validating party would not need to check the certificate associated with the 
signature against a revocation list. 

One may configure a multi-key cryptographic system so that the client owns nothing more 
than a password and the system derives the client’s component of the private keying 
material from this password.  However, this configuration allows the client to exploit only a 
small degree of entropy in its private keying material.  Alternatively, the client could store a 
longer key in a non-volatile storage device such as a smart card or USB token.  However, 
the user would suffer the same issues with smart cards or USB tokens that he or she would 
encounter in a conventional two-key asymmetric system. 

6. Conclusion 

The comparison between PSTP-based signatures and PKI-based signatures is complex.  Both 
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technologies provide similar functional characteristics, e.g., message authenticity, integrity, 
replay protection, and consequential evidence.  When deployed using properly secured 
token media, both technologies adequately protect confidential keying material.  From a 
purely cryptographic perspective, a PKI has an advantage because the server has no access 
to the client’s confidential keying material.  At first glance, this advantage provides the 
appearance that a server cannot forge a valid signature on a client’s behalf.  However, this 
appearance is merely a façade.  The timestamp server can create a signature using a 
compromised asymmetric key pair, and change history by moving the signing date so that it 
precedes the date that the asymmetric key pair first appeared on the revocation list.  Other 
nuances in a PKI’s Certificate Authority also exist which further degrades the cryptographic 
advantages of a PKI.   

PSTP enjoys some advantages over PKI technology from a security perspective.  Since an 
OTP inherently requires user interaction, malware on a user’s machine cannot sign without 
the user’s knowledge.  When one takes into account all of the characteristics of PSTP and 
PKI, both technologies provides excellent security.  However, both technologies have 
caveats and nuances that render a comparison of strength of mechanism difficult to 
quantify.   

One should view PSTP as an alternative to PKI, as opposed to a general-purpose 
replacement.  Straight-through processing which requires no explicit human interaction is a 
better candidate for PKI than PSTP technology, because no one would be available to copy 
the OTP token value from the OTP device token to a computer.  Furthermore, the 
administrators of both peers in the straight-through processing system should have the 
ability and motivation to handle an asymmetric key pair.  A browser-based use case, on the 
other hand, is more suited for PSTP.   An OTP device token’s lack of electronic connection 
between the user’s machine and the OTP device token has installation, mobility, and 
security advantages.   

PSTP signatures, paper-based signatures, and PKI-based signatures all have inherent costs.  
Whenever the cost of PSTP signatures is the least of the three methods, PSTP may provide 
the most viable solution.  The clearest examples are environments that already deploy OTP 
device tokens.  The financial service community is a good candidate because the high risk of 
financial transactions induces the financial community to use strong security.  A second 
candidate is a corporation that deploys OTP device tokens to its employees so that they may 
remotely login through a VPN.  Since the employees already own OTP device tokens, the 
enterprise may dual-purpose these tokens for PSTP signatures.  So, for example, when the 
employee needs to sign an internal corporate document, e.g., change tax withholding 
status, then employee may use his or her OTP device token for the PSTP signature.  Another 
use for PSTP is to business process re-engineer a paper-based environment.  Consider, for 
example, a court document submission which requires a series of signatures.  If the cost of 
handling the paper exceeds the cost of deploying an OTP device token, then PSTP may be a 
good, cost-saving solution. 

JPMorgan Treasury Services successfully deployed PSTP technology for browser-based 
wholesale financial transactions.  JPMorgan dropped in PSTP software has a replacement for 
PKI software without significantly changing its applications’ programming logic.  This 
successful deployment provides evidence that PSTP is a viable, currently available 
technology. 
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