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Abstract—Portfolio optimization is an essential use case in
Finance, but its computational complexity forces financial in-
stitutions to resort to approximated solutions, which are still
time consuming. Thus, the scientific community is looking at
how Quantum Computing can be used for efficient and accurate
portfolio optimization.

Portfolio optimization can be formulated as a quadratic
program, with the cost function enforcing risk minimization for
a targeted return. Of particular interest is the mean-variance
portfolio optimization problem. Using the method of Lagrange
multipliers, the program can be converted into a system of
linear equations and potentially benefit from the exponential
speedup provided by the HHL quantum algorithm. However,
multiple components in HHL are unsuitable for execution on
Noisy Intermediate Scale Quantum (NISQ) hardware.

This paper introduces NISQ-HHL, the first hybrid formu-
lation of HHL suitable for the end-to-end execution of small-
scale portfolio-optimization problems on NISQ devices. NISQ-
HHL extends the hybrid HHL variant with newly available
quantum-hardware features: mid-circuit measurement, Quantum
Conditional Logic (QCL), and qubit reset and reuse. To best of
our knowledge, NISQ-HHL is the first algorithm incorporating a
QCL-enhanced version of Phase Estimation that was executed on
real hardware. In addition, NISQ-HHL includes a novel method
for choosing the optimal evolution time for the Hamiltonian
simulation. Although this paper focuses on portfolio optimization,
the techniques it proposes to make HHL more scalable are
generally applicable to any problem that can be solved via HHL
in the NISQ era.

We empirically demonstrate the effectiveness of NISQ-HHL
by presenting the experimental results we obtained on a real
quantum device, the trapped-ion Honeywell System Model H1.

Keywords. Portfolio Optimization, Quantum Linear Sys-
tems, HHL, Semi-Classical Quantum Fourier Transform, Mid-
Circuit Measurement and Reuse, Quantum Conditional Logic.

I. INTRODUCTION

The HHL algorithm was introduced by Harrow, Hassidim
and Lloyd [1] to solve the Quantum Linear Systems Problem
(QLSP). This involves solving a linear system AZ = b, where
A € CN*N and :i",g € CV, thereby returning the quantum
state |z) corresponding, up to a normalization factor, to the
solution of the linear system.

Rebentrost and Lloyd [2] applied HHL to mean-variance
portfolio optimization [3]. This problem can be formulated as
a linear quadratic-programming problem, and subsequently, be
converted into a symmetric linear system, for which efficient
classical algorithms exist [4].

Under the assumption that b (after normalization) can be
efficiently loaded onto a quantum state and A is sparse and

well-conditioned!, HHL provides an exponential speedup in
N over all known classical algorithms for QLSPs [1]. Since,
for financial applications, time is of the essence, any speedup
in the overall execution time can be extremely impactful.
In the near term, sub-optimal algorithms might outperform
asymptotically optimal ones. Therefore, we need to focus on
the actual run-time complexity instead of the asymptotic one.

HHL is known to be cumbersome to deploy [7], especially
on Noisy Intermediate Scale Quantum (NISQ) hardware [8].
One of the components of HHL that is particularly expen-
sive on near-term devices is the eigenvalue inversion. Given
enough qubits, this can be implemented with polynomial-
depth circuits utilizing quantum arithmetic to approximate
arcsine [9]. However, due to hidden constant factors behind the
asymptotic notation, most near-term approaches fall back on
an implementation based on the uniformly controlled rotation
gate, which leads to n-qubit circuits that have Q(2") circuit
depth’s [10].

This paper introduces NISQ-HHL, a novel enhancement
of the classical/quantum hybrid HHL variant introduced by
Lee et al. [11]. By leveraging newly available hardware fea-
tures and optimizing existing components of HHL, our novel
approach is suitable for the end-to-end execution of small-
size mean-variance portfolio-optimization problems on NISQ
devices. Although this paper focuses on portfolio optimization,
the techniques it proposes to make HHL more scalable are
generally applicable to any problem that can be solved via
HHL in the NISQ era.

A. Novel Contributions of This Work

This paper makes the following novel contributions, all
integrated into NISQ-HHL.:

1) An enhanced formulation of the classical/quantum hy-
brid HHL algorithm [11] that integrates mid-circuit
measurement, Quantum Conditional Logic (QCL), and
qubit reset and reuse [12, 13] into the separate Quantum
Phase Estimation (QPE) routine used for eigenvalue es-
timation. This has two main advantages, which make the
resulting algorithm more suitable for NISQ computers:

a) The number of ancillary qubits is reduced to just
one. This single ancilla is measured, reset and
reused as frequently as needed, thereby allowing
for significantly fewer qubits for the computation.

'Methods for handling ill-conditioned matrices have been proposed [5, 6].



b) While the standard QPE requires controlled gates
between the various ancillary qubits, QCL enables
applying gates conditioned on classical registers.
This reduces the requirement for qubit connectiv-
ity, SWAP gates or qubit transport.

2) A new, efficient procedure for determining a value to
scale A that allows for resolving the eigenvalues with
significantly higher accuracy.

3) An empirical evaluation obtained by executing NISQ-
HHL to solve portfolio-optimization problems end-to-
end on real quantum hardware—the trapped-ion Honey-
well System Model H1. The benchmark consists of a
portfolio of S&P 500 assets. The evaluation includes a
comparative analysis of the results.

B. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II describes a known formulation of portfolio optimization
as a QLSP, which makes it compatible with HHL. Section III
introduces NISQ-HHL, focusing on its novelties. Section IV
presents a detailed comparative analysis of the experimental
results obtained by executing NISQ-HHL on the trapped-ion
Honeywell System Model H1. Section V analyzes the circuits
generated by NISQ-HHL and the results obtained on the Qiskit
[14, 15] statevector simulator, indicating that NISQ-HHL can
scale to portfolios potentially larger than those supported on
current hardware. Section VI compares NISQ-HHL to state-
of-the-art in quantum algorithms for portfolio optimization.
Finally, Section VII summarizes the results of this work, and
concludes the article.

II. PORTFOLIO OPTIMIZATION AS A QLSP

HHL has been proposed as a possible solver for a specific
portfolio-management problem [2], known as mean-variance
portfolio optimization. Given a set of N assets, this problem
requires the following quantities as inputs: the historical
covariance matrix > € R_N *N  the expected returns T € RN,
and the prices p € RY of the assets. Its objective is to
minimize the risk, represented by the quadratic form @' X,
subject to the desired expected. total return | € R and budget
¢ € R. The solution € RY is the allocation vector that
weighs each asset in the portfolio.”

This problem can be stated as a convex quadratic program:

minimize @' 2@
wWERN

2Since the solution is a weight vector, the budget is only a scaling parameter
and can be set to 1. Moreover, in order to compare portfolio performances,
the return of a portfolio is usually expressed as a percentage instead of a
monetary amount. With a simple change of variables, the problem can be
reformulated in these terms.

This quadratic program can be reformulated as a linear system
by using the method of Lagrange multipliers, resulting in the

following equation:
-

0 0 7 n 7
00 77| |0|=1¢ (1)
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where 7,6 € R are the Lagrange multipliers. We will denote
this linear system by A7 = b, with A € RV*N and 7, b € RV,
where N = N 4 2. A quantum state representing the solution,
up to a normalization constant, can be obtained by solving the
corresponding QLSP using HHL. This can be done because
the covariance matrix, Y, is Hermitian, and so A is Hermitian
too. The resulting quantum state |x) = |n, 6, w) allows us to
recover |w).

Following this approach, Rebentrost and Lloyd [2] have
shown how to use the quantum state produced by HHL to
make calculations that are of interest to the financial industry.
For instance, given the optimal portfolio state, one can measure
the portfolio’s risk, or compare, through a controlled-SWAP
test [16], the optimal portfolio to another candidate portfolio
(e.g., one offered by a third party) that has been loaded onto a
quantum state. The result of this comparison can then be used
to decide which portfolio to invest in.

Formulating a mean-variance portfolio optimization prob-
lem as a QLSP may allow us to harness the theoretically
proven exponential speedup provided by HHL. This is in
contrast to general-purpose variational quantum algorithms
[17-19] and, more specifically, variational quantum linear
solvers [20, 21], which utilize heuristics and often have
unproven speedups. However, there are important conditions
that need to be met in order for HHL to have an exponential
speedup.

For example, from Equation (1), it can be seen that b has
only two non-zero entries, corresponding to the two constraints
w and €. Therefore, the number of non-zero entries in b is
independent of N. As a consequence, b can be efficiently
loaded onto a quantum state |b) with a single R, gate.
Conversely, A has only four guaranteed zero entries. The
potential lack of sparsity of A may negate HHL’s exponential
speedup when performing the Hamiltonian simulation required
by QPE [7].

Another challenge is how to access the allocation weights in
the quantum solution state. One approach is to use quantum-
state tomography. The complexity of this procedure for a
real-valued state vector is O(7Nlog(N)/e?) where € is the
accuracy and 7 is the time to produce the HHL solution
[22]. Therefore, the use of this technique would eliminate the
possibility of an exponential speedup. Another approach is
quantum-state sampling [2], because a good approximation of
the allocation vector could be obtained by sampling from it.
The signs of all the entries can be approximately recovered
via what Rebentrost and Lloyd call the long/short assumption.
This approach potentially allows us to maintain the same
exponentially-reduced dependence on IV enabled by HHL.

In Section III, we present the full end-to-end flow of NISQ-
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Fig. 1. NISQ-HHL End-to-End Flow

HHL, illustrating how its characteristics make it suitable for
executiong in NISQ devices.

ITI. NISQ-HHL

This section presents NISQ-HHL and all of its components,
emphasizing the features that makes it scale on NISQ devices.
Section IV shows an evaluation of NISQ-HHL on real hard-
ware for a portfolio-optimization problem.

Given a Hermitian matrix A € CV*¥ | the n-bit estimation
of an eigenvalue \; of A, with ¢ € {0,1,...,N — 1},
can be represented by a binary string of length n, of the
form \; := )\infl) o A§1>A§O). Such a binary string can be
encoded in a computational basis state as follows: \5\1>T =
|)\§"71) . )\1(1))\1(_0)>T’ where 7' is an n-qubit register.

Since A is Hermitian, |b)¢ can be decomposed as |b) g =
ZlN:—Ol Bi|ui) g, where {@;}15" is an orthonormal basis of
C¥ consisting of only eigenvectors of A, and S is a quantum
register. Given that we are interested in problems that have
unique solutions, from now on we will assume A is invertible.

The solution to the QLSP in Equation (1), ignoring a
normalization constant, can be expressed as follows:

N-1 )
|17>s = |A71b>s = Z )\f |Uz'>s
i=0

We define the set of the relevant eigenvalues of A as
Ay :={); : |8i/x;| > €}, where € > 0 is a configurable thresh-
old. Essentially, A; contains the m distinct eigenvalues of
A whose amplitudes in the solution, in absolute value, are
sufficiently large.

One of the contributions of NISQ-HHL is its ability to
enhance the hybrid HHL algorithm introduced by Lee et al. by
replacing the standard QPE with a version of QPE that uses
Quantum Conditional Logic (QCL) for eigenvalue estimation.
These estimates are employed to condition the rotations in
the eigenvalue inversion component. We refer to this QCL-
enhanced QPE as QCL-QPE. In NISQ-HHL, QCL-QPE is
used to estimate the relevant eigenvalues. In order to do so,
this requires evolving the propagator U := e'4%™ of A, for
time 27y, via Hamiltonian simulation. We define v as the
scaling parameter of the matrix A, for reasons that will be
made clear in Section III-B. Another contribution of NISQ-

HHL is integrating a novel verifiable procedure for selecting
the optimal scaling parameter.

Figure 1 illustrates the end-to-end flow of NISQ-HHL. Our
aim is to execute and validate NISQ-HHL on real quantum
hardware supporting mid-circuit measurement, qubit reset and
reuse, and QCL. NISQ-HHL consists of four steps, indicated
as (a), (b), (¢) and (d) in Figure 1:

(a) The QCL-QPE procedure is used to construct a distribu-
tion over the estimates of the relevant eigenvalues with
n-bit precision. For this to work efficiently, we need to
scale A by the optimal parameter ~y. To do so, we first
run Algorithms 1 and 2, introduced in Section III-B, to
select the optimal value of ~.

(b) Classical post-processing is performed on the resulting
histogram to obtain the estimates of the m relevant
eigenvalues, i.e., Ap. R

(c) The n-bit estimates, {)\i}'i"l_ol, obtained in (b), are used
to determine rotation angles {2arcsin(C¢/x,)}," for
the eigenvalue inversion circuit. The estimates are also
mapped to a smaller number of bits, r. Each rotation is
conditioned on its corresponding r-bit estimate.

(d) The standard HHL procedure is executed, but it uses
the circuit constructed in (c) for the eigenvalue inversion
step.

Note that the implementation of the Hamiltonian simulation
routine is not in the scope of this work. It would require
addressing the challenges of performing it on NISQ devices
[23]. In order to perform experiments with NISQ-HHL on
quantum hardware, instead of using quantum algorithms for
Hamiltonian simulation, we classically calculate U. Then, we
pass it to the Qiskit transpiler [14], which decomposes it into
basis gates.

In the following subsections we illustrate NISQ-HHL in
detail.

A. Eigenvalue Estimation and Inversion with Quantum Con-
ditional Logic

The eigenvalue inversion component of HHL involves con-
trolled rotations conditioned on the n-bit estimations of the
eigenvalues, i.e., multiset {S\Z}f\; 61. This algorithmic compo-
nent can thus be represented by the following mapping:
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where C' is a normalization constant chosen to be in O(1/x),

and k is the condition number of A [1].

This transformation is accomplished by applying R, rotation
gates to the ancillary qubit |0) controlled by the T' register
containing the eigenvalue estimates. A rotation will have to
be applied for each of the distinct elements of {\;}Y '
The angle for the i" rotation is #; = 2arcsin(C/x;). This
computation requires either some prior information about the
eigenvalues or a coherent computation of the arcsine function
using quantum arithmetic [24]. However, quantum arithmetic
has not yet been shown to be feasible on NISQ devices. The
asymptotically efficient implementation of arcsine made by
Hiiner et al. [24] requires over one-thousand CNOT gates even
for a small register 1" of size two.

Another approach would be to perform an exhaustive search
of the basis states of the eigenvalue estimation register. This
can be accomplished by a uniformly controlled rotation gate
[10]. A uniformly controlled rotation on n qubits decomposes
into 2 — 1 n-qubit controlled rotations, as shown in Figure 2.
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Fig. 2. Decomposition of a uniformly controlled rotation gate into 2™ — 1
n-qubit controlled rotations. QPE loads the k™ bit of the n-bit approximation
of each eigenvalue onto qubit ji, for k = 0,...,n—2,n— 1. For eigenvalue
inversion, 0; = 2arcsin(2"C/i), fori = 1,...,2" —2,2™ — 1.

This would effectively control on all of the eigenvalue
approximations that can be made with n bits, which exclude
the zero state because A is assumed to be invertible. However,
this approach can quickly become infeasible since n is the
bit precision required to approximate the eigenvalues, and the
circuit depth’s dependence on it is exponential.’

Yet another approach is the classical/quantum hybrid solu-
tion for HHL introduced by Lee et al.. Before running HHL,
they apply QPE to the propagator U of A with input state |b).

3The Gray code [25] can be used to reduce the number of basis gates
required for this exponentially long sequence of n-qubit controlled rotations.
However, it comes with the cost of computationally intensive classical
operations, and the depth of the circuit is still in ©(2™).

The output probability distribution is used to obtain estimates
of the eigenvalues before performing the eigenvalue inversion.
These estimates are employed to compute the angles and
controls for the required rotations to perform the eigenvalue
inversion.

NISQ-HHL aims at estimating only the m relevant eigen-
values of A. The reason is that their amplitudes in the
solution of the QLSP, in absolute value, are sufficiently large.
Moreover, by controlling the rotations on the estimates of the
relevant eigenvalues, we are reducing the number of controlled
rotations in comparison to the uniformly controlled rotation
gate. In the general case, m < N, where m := |A;| and N
is the size of the linear system, as introduced previously. In
the uniformly controlled rotation approach, the rotations are
conditioned on each of the possible n-bit strings. Since the
elements of A, are distinct and, in the worst case, m = N, it
follows that m < N < 2™ — 1. For example, given a 5 X 5
Hermitian matrix A, three bits are required to represent all
the possible elements in Ap. This implies that there are seven
rotations in the uniformly controlled rotation gate. Since n
is the number of bits used for estimating the eigenvalues,
potentially requiring high precision, it is usually the case that
m < N < 2" — 1. Furthermore, as we increase this precision,
the number of rotations in the uniformly controlled rotation
gate increases exponentially. This enables the NISQ-HHL
eigenvalue inversion implementation to use significantly fewer
controlled rotations than the uniformly controlled rotation
approach.

To estimate the relevant eigenvalues, one could utilize the
aforementioned QPE approach of Lee et al.. However, QPE
is still difficult to implement on NISQ hardware because the
number of ancillary qubits grows as the desired bit precision,
and QPE relies on many controlled gates [26]. Moreover,
QPE fully entangles qubits. Therefore, an all-to-all connection
topology is preferred to limit the use of SWAP gates.

At least at a theoretical level, a QPE variant has been
identified that better lends itself to NISQ hardware by utilizing
the semi-classical inverse Quantum Fourier Transform (QFT)
[27-29]. This is a non-unitary version of the inverse QFT that
estimates each bit of the eigenvalue sequentially. A diagram
of this variant is displayed in Figure 3a, which shows how to
efficiently estimate the eigenvalues of the unitary operator U
to three-bit precision by leveraging mid-circuit measurements,
ground-state resets, QCL, and qubit reuse.

QCL-QPE is mathematically equivalent to performing the
original inverse QFT and measuring the eigenvalue register. It
is also similar to iterative Quantum Phase Estimation (i1QPE)
[30] to the extent that it only requires one ancillary qubit to
achieve arbitrary bit precision of the eigenvalues. A limitation
of iQPE, however, is that it requires the initial state to be an
eigenvector of U in order to estimate its corresponding eigen-
value. This prior knowledge of the eigenvectors could be used
to directly solve the QLSP. Conversely, by leveraging the mid-
circuit measurement, qubit reset and reuse, and QCL hardware
technology, QCL-QPE can estimate eigenvalues without prior
information of the eigenvectors.
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Fig. 3. Circuits for estimating the eigenvalues of the unitary operator U to

three bits using QCL-QPE (a) or QPE (b). S is the register that U is applied

to, and j is a classical register. H refers to the Hadamard gate and Ry, for
k = 2, 3, are the phase gates.

QCL-QPE has two properties that make its circuits more
suitable for near-term devices than the standard version of
QPE:

1) QCL-QPE requires only one ancillary qubit for an

arbitrary bit precision, and

2) QCL-QPE replaces two-qubit gates with one-qubit gates

controlled by classical bits as it can be seen by compar-
ing Figures 3a and 3b.

The relevant eigenvalues of A are estimated in a separate
procedure using QCL-QPE, represented as Step (a) in Figure
1. Therefore, in Step (c), we can classically map the n-
bit eigenvalue estimates to r bits, such that » < n. The
rotation gates are conditioned on these r-bit estimates, while
the rotation angles are computed using the higher-precision,
n-bit estimates. Following this, in Step (d), we are able to run
the standard HHL using r ancillas, while performing matrix
inversion with n-bit estimations of the eigenvalues. Lowering
the number of qubits and circuit depth reduces the exposure
to noise.

Note that, apart from the eigenvalue estimation component,
where the standard QPE is replaced by QCL-QPE, as shown in
Section III-A, NISQ-HHL uses the standard QPE. This is be-
cause QCL-QPE repeatedly collapses the quantum state of the
ancillary qubit through mid-circuit measurements. Therefore,
QCL-QPE cannot be incorporated as part of a deeper circuit
that relies on the quantum states encoded in this ancillary
register.

It is important to emphasize that we do not claim asymptotic
efficiency. However, we do assert that the total complexity of
NISQ-HHL is lower than the ones achieved with the previ-
ously mentioned methods (quantum arithmetic and uniformly
controlled rotation gate) for a low-qubit count. Therefore, the

presented methodology brings HHL closer to being realizable
on current quantum hardware.

Having explained QCL-QPE and how it is used to construct
a distribution over the estimates of the relevant eigenvalues, in
Section III-B, we introduce the algorithms to find the optimal
scaling parameter . This parameter is used to scale the matrix
A, which enables resolving the eigenvalues in the QCL-QPE
output distribution with significantly higher accuracy.

B. Optimizing the Selection of the Scaling Parameter

In the foundational HHL article [1], A is assumed to
have positive eigenvalues in [!/x, 1], where x is the condition
number of A. The eigenvalues are restricted to this range to
account for the periodicity of the imaginary exponential and
ensured well-conditioning. In practice, it is necessary to scale
A to have a spectrum in this range. However, even under
this assumption, we could be wasting qubits to unnecessarily
encode values between the largest eigenvalue, Ay, and 1. We
pursue a more efficient approach, consisting of estimating Amax
first, and then scaling A by v = AL, so that the maximum
eigenvalue of vA is 1.

A benefit of our approach is that it only considers Amax b,
the largest eigenvalue in A, instead of Ap,.. For now on, we
will only take into account the eigenvalues in A, and will not,
for example, make a distinction between Amayx.p and Apax.

Algorithm 1: Optimize the selection of ~ using n-bit
estimations of eigenvalues

Guess an overapproximation & of Apax

v:=1/a // Initialize scaling parameter

z:=0

// At each step, 7Y*Apax <1

while z # 2" — 1 do

p := n-bit output distribution of QCL-QPE using
unitary e*42™ and input state |b)

z = max{j € {0,...,2" — 1}| p; >0, p,; € p}
// x is an n-bit estimation of

/] 2% %y % Agax

if x = 0 then
| yi=yx2"
else
| vi=yx @ -1/a
end
end

Result: v = A-L . with Apayx n-bit estimation of Amax

max?

Algorithm 1 shows how to optimize the selection of ~.
Given n-bits, the optimal value of ~ returned by the algorithm
helps to encode the eigenvalues using all available bits in the
output distribution of QCL-QPE applied to U := €427, As
a result, this makes it easier to distinguish the eigenvalues
from each other and estimate the relevant eigenvalues, i.e., Ay,
accurately. Without loss of generality, Algorithm 1 assumes all
the eigenvalues to be positive. We will show shortly how to
account for negative eigenvalues.



Algorithm 1 starts by guessing an overapproximation of
Amax- We will discuss later how to make this operation rigor-
ous. The next step consists of iteratively updating the value of
~ until v converges to the optimal value. During each iteration,
Algorithm 1 runs QCL-QPE to compute the n-bit estimates
of the eigenvalues of the unitary U using gamma computed
during the previous iteration. Specifically, Algorithm 1 post-
processes the output distribution to get a new n-bit estimation
of 2"y Amax in order to update ~ for the next iteration.*

The number of iterations to find the optimal ~ using
Algorithm 1 is in O (1/nlogy (%/Am.)). To ensure we do not
overestimate < in the process, we could take a conservative
approach, which consists of overestimating = while computing
it, thus lowering (2" —=1)/z. In practice, we also want to under-
estimate ~ in order to prevent amplitudes of basis states near
2" from dispersing and mixing with basis states near 0 and
causing overflowing.

Regarding the bit precision, to represent both the largest and
smallest eigenvalues, in theory, we need n > logy (Amex/Amn) =
log, (k). However, this requires prior knowledge of k. In
practice, we first run Algorithm 1 with an initial precision of
n bits. Then, if Ay, estimated via QLC-QPE, turns out to be
0, this indicates that we need higher bit precision to prevent
the O state from having significant probability. This is because
A is assumed invertible and consequently, no eigenvalue can
be 0. Thus, we increase n just enough to guarantee that
the estimation of Ap;, is different from 0, at which point
n > logy (k).

The correctness of Algorithm 1 relies on the fact that «v is an
overapproximation of Ap,x. One way to achieve this result is to
use the Frobenius norm of A, defined as || A||p := y/Tr(ATA).

Indeed, since A is Hermitian, ||A||r = \/Ei]\gl A2, and so

the Frobenius norm of A is a valid overapproximation of Ayx.
However, the computation of the Frobenius norm has quadratic
complexity in N. Therefore, it is desirable to find a faster
approach for finding a value for « that overapproximates Apax.
For this reason, we propose Algorithm 2, which, using one
execution of QCL-QPE, tests the validity of any initial guess
of a. This bypasses the need to compute || A||g. If the initial
guess of o does not satisfy a > A, we can retry with a,
potentially significantly, larger .. In fact, given the logarithmic
complexity, in terms of number of iterations, of Algorithm I,
even with low bit precision, such as n = 4, overestimating
Amax by a factor of a billion would only require eight iterations
before returning the optimal ~. In practice, we expect to find
~ significantly more efficiently by starting with a guess, «,
than by computing || A||E.

The idea of Algorithm 2 is the following. If « is a valid
guess, there will be no overflow in the output distribution of
QCL-QPE applied to €*42™ with «y = 1/a. Then, performing
n + 1 right bit shifts should reduce all n-bit eigenvalue
estimates to 0. To test this, Algorithm 2 executes QCL-QPE

4Any algorithm outputting an n-bit estimation of 2y Amax could be used
in place of QCL-QPE. Nevertheless, we chose to use QCL-QPE, since it is
more compatible with NISQ devices, as explained in Section III-A.

Algorithm 2: Verify if « is a n-bit overestimation of
AT'I'la)(
Assumption: at each step, there is at least one eigenvalue of v A not

in |J [j—27 (D), g am ()]
JEL

// Initialize scaling parameter

Ii=1/ont1q

p := n-bit output distribution of QCL-QPE using
unitary ¢*4%"" and input state |b)

if pg # 1 then
Return « is not valid

// Otherwise all eigenvalues
// estimations would have been 0

else
| Return « is valid

end
Result: Return if « is an overestimation of A«

using €*42™"" with T' = 1/27+14. On the contrary, if « is not a
valid guess, the n + 1 right bit shifts would not be sufficient
to reduce all estimations to 0. Note, v and I'" have the same
role in the definition of U and just help differentiate the two
algorithms.

As mentioned before, Algorithm 1 assumes positive eigen-
values. To take into account negative eigenvalues, one can
define the maximum eigenvalue using the absolute value,
encode negative eigenvalues using two’s complement and
then replace 2" by 2"~! in the update of 7. Similarly, in
Algorithm 2, replacing 1/2*+' by 1/2" in the definition of T’
suffices to support negative eigenvalues. Accounting for neg-
ative eigenvalues is crucial, since A, in the QLSP represented
by Equation (1), may be indefinite.

We note that Kerenidis and Prakash [31] have developed an
algorithm to e-approximate n := [lAll2/||A|ls, where ||A||2 =
| Amax| is the spectral norm of A. Thus, their algorithm can also
be used to find |Amax| given that ||A||r has been previously
computed, which is not required for Algorithm 1. As men-
tioned before, the optimal 7y is [Amax,p| ™' and not [Ama| ™,
when given |b) as an initial state. Since Algorithm 1 only
computes |)\max,b|_1, this makes it more suitable for NISQ-
HHLbased on the discussions in Section III-A.

In addition, their algorithm executes standard QPE, which
is not exchangeable for QCL-QPE because of the coherence
requirement. In contrast, Algorithm 1 runs QCL-QPE, which
for the reasons explained above, is more suitable for NISQ
computers.

Having introduced the theoretical formulation of NISQ-
HHL, in Section IV we present experimental results obtained
from running the components of NISQ-HHL separately, as
well as collectively in an end-to-end flow.

IV. EXPERIMENTAL RESULTS

We considered a portfolio-optimization problem with two
S&P 500 assets for demonstrating the validity of NISQ-HHL.
After considering the two constraints, the matrix A of the



linear system is of size 4 x 4. The experimental results
presented in this section were obtained on the trapped-ion
Honeywell System Model H1 given its support for mid-circuit
measurements, qubit resets and reuses, and QCL [12]. In
order to do so, we transpiled and optimized the circuits from
Qiskit to H1’s native gates using Cambridge Quantum’s pytket
package [32].

Note that, for the reasons explained in Section III, in the
components where Hamiltonian simulation is required, we
classically computed U := e*42™, where ~ is the scaling
parameter. Then, we passed it to Qiskit, which decomposed it
into basis gates.

As the error rates of two-qubit gates are an order of
magnitude larger than those of one-qubit gates [12], and the
numbers of both gate types are similar in the circuits used,
we will only present the H1 two-qubit gate ZZMax counts
for the circuits. The ZZMax is equivalent to Rzz(7/2), and,
up to one-qubit gates, it is realized via the Mglmer-Sgrensen
interaction [12].

In the following subsections, we present data collected from
running some of the components of NISQ-HHL separately.
We used these results to calibrate the precision to use at each
step of an end-to-end run of NISQ-HHL for this particular
portfolio-optimization problem. Then, in Section IV-D, we
show results from the end-to-end execution. The circuits were
also ran on the Qiskit Aer statevector and QASM simulators
to compare with the hardware runs.

A. Standard QPE and QCL-QPE Benchmark

We benchmarked the performance of both the standard QPE
and QCL-QPE for estimating the eigenvalues of A. We used
as the initial state |b) from the portfolio-optimization problem
with two assets that was introduced before. We set v = 100
for both implementations.

In Table I, we compare the number of gates and qubits
required for both QPE implementations for estimating the
eigenvalues of A to different precisions: three, four and five.
We can see that QCL-QPE employs fewer qubits and gates.

3-bit  4-bit  5-bit
Gates 63 88 115
Qubits 5 6 7
Gates 57 76 95

Qubits 3 3 3
TABLE 1
COMPARISON OF THE NUMBER OF TWO-QUBIT ZZMAX GATES AND
QUBITS IN BOTH QPE IMPLEMENTATIONS FOR ESTIMATING EIGENVALUES
TO DIFFERENT PRECISIONS.

Standard QPE

QCL-QPE

As the precision grows, the number of two-qubit gates
increases for both implementations. However, the number of
two-qubit gates saved using QCL-QPE, instead of the standard
implementation, grows quadratically as n(n— 1), with n being
the bit precision. Moreover, even though the precision in bits
increases, the number of qubits in the QCL implementation
does not change. This contrasts with the linear growth in the
standard QPE.

In order to quantify the performance of both implementa-
tions, we compared the empirical distribution of measurement
results from the circuit execution on the Honeywell System
Model HI1 to the distribution obtained from the Qiskit QASM
simulator. One way to compare two probability mass func-
tions, p and ¢, is to use the fidelity metric [33]: F(p,q) =
(Z \/m)27 F(p,q) €[0,1].

‘We compare the achieved fidelity in both implementations
for the three precisions, in Table II. It can be seen that the
computed fidelity metrics for the two implementations are
similar, for three-bit estimations. Here the number of saved
two-qubit gates using QCL-QPE is small. In addition, reducing
the number of qubits does not overcome potential errors due
to mid-circuit measurements and resets.

| 3-bit  4-bit  5-bit
Standard QPE | 98.6 904 42.6
QCL-QPE 98.1 950 432
TABLE 11

FIDELITY EXPRESSED IN % BETWEEN THE PROBABILITY DISTRIBUTIONS
FROM THE QPE EXPERIMENTS RAN ON THE HONEYWELL SYSTEM
MODEL H1 AND IN THE QISKIT QASM SIMULATION, WITH 2000 SHOTS
EACH.

When we increase the precision to four and five bits, the
circuits in both implementations deepen, and therefore, we see
a drop in fidelity. Nevertheless, as shown in Table I, QCL,
mid-circuit measurement, and qubit reset and reuse, result
in the QCL-QPE circuit being shallower than the standard
implementation. As a consequence, the achieved fidelity with
QCL-QPE is still higher than the standard QPE. In both
implementations, the decay of the fidelity for five-bit precision
can be explained by the number of gates approaching the limit
supported by current devices.

Given these results, in order to optimize the portfolio with
NISQ-HHL, we will run the separate QCL-QPE procedure,
Step (a), for estimating the eigenvalues to four bits. Apart from
this separate component, NISQ-HHL will use the standard
QPE circuit in Step (d) of the algorithm with three ancillas.
In the eigenvalue inversion circuit, we will map the four-
bit estimates to three-bit estimates to be represented by three
ancillas in the HHL circuit, as explained in Section III-A.

Now that we have determined the bit precision for both
the standard QPE and the QCL-QPE components, in Section
IV-B we show how to select the set of estimates of the relevant
eigenvalues. This is accomplished, in Step (b), by classically
post-processing the output probability distribution of QCL-
QPE executed on hardware.

B. QCL-QPE for Estimating the Eigenvalues

For QCL-QPE to effectively estimate the relevant eigenval-
ues of A, we need to optimize the scaling parameter . We
started with an initial guess of 0.02 for Ap,, corresponding
to v = 50. We verified with Algorithm 2 that o = 0.02 was
indeed an overestimation of Ay, as required by Algorithm 1.

Following Algorithm 2, in the case of negative eigenvalues,
we tested the validity of the initial guess v = 50 with precision



n = 4 by running QCL-QPE with ' = - 274 = 50 - 274
The output probability distribution, shown in Figure 4 (a), is
concentrated around zero, thus v = 50 is a valid guess. An
example for an invalid input would be v = 3200. The output
distribution of QCL-QPE with I' = ~ - 274 = 200 is plotted
on Figure 4 (b). As this distribution is not concentrated around
zero, v = 1600 is not a valid guess.
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Fig. 4. Probability distributions over the four-bit eigenvalue estimates from
the QCL-QPE executions using e*427T for I' = 50 - 2=% (a) and I" = 200
(b). The blue bars represent the experimental results on the HI machine -
2000 shots (a) and 2000 shots (b). The theoretical (classically calculated)
eigenvalues are represented with the red dots and the results from the
Qiskit QASM simulator are represented with the orange dots. On (b) as the
theoretical eigenvalues exceed the values we can encode, the distribution we
observed shows that values overflowed.

Now that we confirmed v = 50 is a valid guess, we can
execute Algorithm 1. We ran QCL-QPE for estimating the
eigenvalues of A with this value of v, and we used |b) as the
initial state. The output probability distribution is displayed
in Figure 5 (a). The z-axis is binned into 16 values, which
are all of the possible four-bit estimates in decimal. They are
represented by the grey, vertical lines. In the experiment, we
only observed significant probabilities (blue bars) for states
within the range [—0.005,0.005].

Thus, in order to better distinguish the eigenvalues, we
decreased the distance between bins by increasing the scaling
factor . We did so by using our scale optimization algorithm,
Algorithm 1, which increased + to 100. As explained before,
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Fig. 5. Probability distributions over the four-bit eigenvalue estimates from
the QCL-QPE run using €427 for v = 50 (a) and v = 100.The blue
bars represent the experimental results on the H1 machine - 2000 shots
(a), 1000 shots (b). The theoretical (classically calculated) eigenvalues are
represented with the red dots and the results from the Qiskit QASM simulator
are represented with the orange dots.

we overestimated Aj.x and hence underestimated v to avoid
overflow.

We can see in Figure 5 (b) that using v = 100 makes the z-
axis range smaller than in (a), while keeping the same number
of bins. As a consequence, the bin intervals are smaller, and
there is a better agreement between the theoretical eigenvalues,
which are classically calculated, and the experimental prob-
abilities. Moreover, we can see close concordance between
the experimental and the simulation results (orange dots).
The ability to better distinguish eigenvalues in (b) over (a)
shows the importance of the scale optimization procedure.
For clarification, the distribution of classically calculated,
theoretical, values in the plots are distributed according to
{|8:?}Y55", as mentioned at the beginning of Section IIL.

Once we have obtained the probability distribution over the
eigenvalue estimates with the optimal v, we classically post-
processed this distribution, displayed in Figure 5 (b), to select
the estimates of the elements in A,. These values were used to
construct the rotations for the eigenvalue inversion circuit. As
QPE uses the QFT, which is a discrete Fourier transform, we
expect non-zero probability of non-relevant states even with



a noiseless quantum computer. Since these eigenvalues would
need an infinite precision to be fully represented, we expect
probability mass to disperse to neighboring states.

In the general case, NISQ-HHL uses the the following
technique to select the states that best represent the relevant
eigenvalues (i.e., Ap). Given the definition of A, (refer to
Section IIl), we are looking for each eigenvalue, \;, that
satisfies |%i/x;| > €. In this particular case, given the four-bit
precision, with one bit encoding the sign, the factor 1/x, will be
at most 23, and hence it is not significant enough to consider
using the mentioned technique. However, a noise-threshold can
be used to remove states with close-to-zero probability in the
distribution displayed in Figure 5 (b). We then picked states
whose probabilities are significantly higher than this threshold.
It is straightforward to see in the distribution that the four
states indicated with black arrows have probabilities that are
higher than the noise-threshold.

We can see that the two largest eigenvalues, computed
classically and indicated with the red dots and the green arrows
in Figure 5 (b) are in the middle of two vertical lines, which
represent possible eigenvalue estimates. As a consequence, we
can state that the probabilities corresponding to each of these
eigenvalues are split into their neighboring states. As such, we
can also consider the states with higher probability indicated
with the red arrows as estimates of the elements in Ay,.

Note that we have detected this probability splitting in
neighboring states by looking at the classically calculated
eigenvalues. As the eigenvalues might have an infinite binary
decomposition, thus we expect this probability splitting to
exist regardless of the precision. Therefore, we also used the
Qiskit QASM quantum simulator. The probabilities of the
neighboring states calculated on simulator (indicated with the
red arrows) are significantly higher than the noise-threshold
for the simulation results. This allows us to consider these
states as estimates of the elements in A;. In addition, more
complex resolution methods, such as multiple scaling factors,
might be used in future work.

To sum up, we have built two possible sets of four-bit
estimates to represent the elements in Aj. These are: the four
estimates indicated with the black arrows and the six estimates
indicated with both the black and the red arrows. Later on in
the article we will compare the performance of NISQ-HHL
circuits using these two sets.

Before implementing the end-to-end NISQ-HHL circuit, we
have to decide the number of ancillary qubits. As we have
already benchmarked the QPE component in Section IV-C,
we will look at the eigenvalue inversion component in the
next section.

C. NISQ-HHL Eigenvalue Inversion Circuit Performance

If we run the HHL circuit up to the eigenvalue inversion
component, ideally a measurement of the register 1" will return
an n-bit estimate of one of the relevant eigenvalues, and S
will return a superposition of the corresponding eigenvectors,
as shown in the final state in (2). Unfortunately, this is not
necessarily true, mainly due to hardware noise. To quantify this

noise as a function of the number of ancillas and determine
the size of the eigenvalue register in NISQ-HHL, we tested
this component.

To do so, we ran circuits that perform the transformation
represented by (3), with the register 7' consisting of two,
three or four qubits. For these experiments, we used one
of the eigenvalues of A, A, that was estimated to four bits
in Section IV-B. The estimate was truncated in the cases
where T consisted of two or three qubits. We took C' :=
min{|\;|}"5', and defined the corresponding rotation angle
to be 2 arcsin(C/X).

In addition, the register S was initialized with the eigenstate
|u) corresponding to A. The first term of the final state in the
mapping in (3) represents the desired output state. Whereas,
the second term represents the presence of noise.
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We ran the circuits on the Honeywell H1 system, and we
measured all registers. Figure 6 displays the probability distri-
butions of certain events that occur after measuring all of the
registers for each of the three circuits executed. The events “0”
(success) and “1” (failure) correspond to the post-measurement
states [0) |[A\)7 |u) g and |1) |X) 7 |u) ¢ respectively (first term in
the final state mapping in (3)). Tracing out the rotation ancilla,
the event “other” corresponds to the post-measurement state
of registers 7' and S not being the product state |A)7 |u) g
(second term of the final state in (3)).

We conclude that increasing the number of ancillary qubits,
which are the ancillas in the end-to-end HHL, raises the prob-
ability of “other”. This represents the probability of measuring
noise in both the 7" and S registers. The noise is represented by
states that do not correspond to the estimated eigenvalue and
its eigenstate. Moreover, we see that for four ancillas the ex-
perimental probabilities and the theoretical values represented
by the dotted lines disagree.

Even though it seems that the best choice is to use two
ancillas, it will not provide enough precision for the QPE
to separate the eigenvalues for a proper eigenvalue inversion.
Therefore, we decided to employ three ancillas. This result is
in agreement with the conclusion reached from the results of
the standard QPE benchmarks in Section IV-A.

Now that we have determined the number of ancillas for
the NISQ-HHL circuit, we implemented it and we studied the
number of controlled rotations and the circuit depth’s, in terms
of ZZMax, of the eigenvalue inversion circuit. In Table III,
we show a comparison for the three implementations: the
uniformly controlled rotation gate and the proposed NISQ-
HHL eigenvalue inversion circuit, in which the rotations are
conditioned on four and six estimated eigenvalues respectively
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Fig. 6. Probability distributions of previously mentioned events that occur
after measuring all of the registers after the eigenvalue inversion on the
Honeywell H1 device with 1000 shots. The red dotted line represents the
theoretical probability of the failure (“0”) event and the green dotted line that
of success (“1”) event.

(refer to Section IV-B). In all the cases, the circuits consisted
of three control ancillary qubits and one rotation ancillary
qubit.

Uniformly NISQ-HHL NISQ-HHL
Rotations 7 4 6
Depth 138 80 120
TABLE III

COMPARISON OF THE NUMBER OF ROTATIONS AND ZZMAX DEPTH OF
THE DIFFERENT EIGENVALUE INVERSION CIRCUITS.

The number of rotations in each approach was determined
as follows. According to the classical post-processing, we im-
plemented two NISQ-HHL circuits conditioning the rotations
on two sets of estimates of A respectively, one with four
estimates and another one with six. In this approach, one could
rotate on |0) as it can represent an eigenvalue that got rounded
to 0 when reducing the bit precision from n to r bits. For
example, in Figure 5 (b) the first black arrow to the right of the
x-axis origin, corresponds to the |000) state when represented
with three bits. The rotation angle is determined based on the
four-bit representation |1111), i.e., —1 in two’s complement
representation. In contrast, the uniformly controlled rotation
approach excludes the zero state, for the reasons explained in
Section III. As a consequence, in this approach the rotations
employing three control ancillas are conditioned on seven
eigenvalue estimates.

We see in Table III that the NISQ-HHL eigenvalue inversion
circuits are significantly shallower: a reduction of 42% and
13% in depth when conditioning on four and six estimates
respectively. What is more, the angles for the controlled
rotations {6, }!", o are estimated from eigenvalue estimates of
Ay, which utilized more precision in our approach. Therefore,
for these two reasons, we expect to obtain a more accurate
estimation of the solution to the linear system by executing
NISQ-HHL on NISQ devices.

A way of comparing the NISQ-HHL estimation of the best
portfolio to the classical calculated solution is by using a

controlled-SWAP test [16] between the quantum states that
represent them.

D. SWAP Test Between the Portfolio State and Classical
Solution

The controlled-SWAP test can be used to compute the
magnitude of the inner product between the quantum state
that represents the allocation vector produced by NISQ-HHL
and the classical solution loaded onto a quantum state [34].

We added a new qubit to the NISQ-HHL circuit called the
swap ancillary qubit, and we loaded the normalized classically
calculated solution to the linear system, i.e., T, onto this qubit.
Then we ran the NISQ-HHL algorithm and the controlled-
SWAP test between the HHL output state |) and the quantum
state encoding the classical solution |x..).

We executed the circuits in the Qiskit statevector simulator
and on the Honeywell H1 hardware for the three different
approaches discussed before: the uniformly controlled rotation
gate and NISQ-HHL conditioning on four and six estimates
respectively. We measured the rotation and swap ancillary
qubits. With the results from the measurements of these two
qubits using 3000 shots, we calculated the inner product

between the quantum states as:

\/ 2 P(uéj gﬂ’(un) 1, where P represents the probability of

measuring the respective quantum state. The most-significant
qubit corresponds to the rotation ancilla, where a post-
measurement state of |1) corresponds to success.

We show the inner products as well as the circuit depth’s and
the number of controlled rotations for the three approaches,
in Table IV. Regarding the simulation results, the NISQ-HHL
eigenvalue inversion rotations conditioned on six eigenvalues
increased the inner product by 70% over the original method
with a uniformly controlled rotation. This is due to the four-
bit estimation used in our method for computing the rotation
angles, compared to the three-bit precision in the previously
mentioned method.

Uniformly NISQ-HHL NISQ-HHL

Rotations 7 4 6

Depth 272 214 254

Simulation 0.59 0.49 0.83

Hl 0.42 - 0.46
TABLE IV

COMPARISON OF THE NUMBER OF ROTATIONS IN THE EIGENVALUE
INVERSION, ZZMAX DEPTH OF THE HHL PLUS THE CONTROLLED-SWAP
TEST CIRCUITS AND THE INNER PRODUCT CALCULATED FROM THE
QISKIT STATEVECTOR SIMULATOR AND THE HONEYWELL H1 RESULTS
WITH 3000 SHOTS.

We achieved a smaller inner product for NISQ-HHL when
conditioning the rotations on four eigenvalue estimates, instead
of six, on simulator. The reason for this is that the set
of four eigenvalue estimates is an incomplete representation
of the elements of A, due to an inefficient classical post-
processing over the probability distribution of the eigenvalue
estimates displayed in Figure 5 (b). As discussed, not all of the
classically calculated values coincide with the experimental



results. In order to reach a better inner product, we had to
detect that, in some cases, the probability mass was split
between the closest approximations to the eigenvalues. This
was possible by analyzing the results of the Qiskit QASM
simulator together with experimental results. This shows the
importance of an efficient classical post-processing that allows
for determining the controls and angles for the rotations in the
eigenvalue inversion step.

We can see from the results of the experiments on the Hon-
eywell System Model H1 that the calculated inner products are
significantly smaller than the ones calculated using the Qiskit
statevector simulator. This stems from the fact that the circuits
executed are very deep for NISQ devices. Nevertheless, NISQ-
HHL, controlling on the six estimates, performed better than
the uniformly controlled rotation version. This is because
our novel approach employs more precision in bits for the
rotation angles, and the shallower circuits used are less prone
to hardware noise.

V. SCALING Up NISQ-HHL

The aim of this section is to present how NISQ-HHL can be
easily applied to a portfolio of any given size. Particularly, we
show how the algorithm works for more assets. We considered
two portfolio-optimization problems consisting of 6 and 14
S&P 500 assets respectively. We ran NISQ-HHL for these
two problems followed by the controlled-SWAP test on the
Qiskit statevector simulator. The results from the controlled-
SWAP test were used to calculate the inner product between
the quantum state produced by HHL and the optimal quantum
state computed classically.

We ran Step (a) and (b) in Figure 1, for both problems. The
rotations in the eigenvalue inversion circuits were condition
on these estimates respectively: four estimates for the 6 assets
problem and five for the 14 assets problem. In both cases we
used six ancillary qubits.

Even though we are running fewer controlled rotations in
NISQ-HHL, the number of qubits required is still significant:
14 for 6 assets and 16 for 14 assets. The circuits are also still
very deep. These characteristics prevent us from running these
experiments on real hardware. Nevertheless, we can calculate
the inner products using the Qiskit statevector simulator. We
compare the number of controlled rotations, the circuit depth’s
and the inner products, in Table V.

We can see that for both sets of assets, the inner products
calculated with NISQ-HHL are significantly high (very close
to one). The inner products obtained for the 14 assets problem
are slightly higher than for the 6 assets one. A reason for
this is that the eigenvalue inversion implementation depends
on the classical post-processing of the probability distribution
obtained with the separate QCL-QPE routine. And in some
cases, this processing may estimate the elements of A, more
accurately than in others. A future research project could be
improving the post-processing technique to better identify the
elements of Ay.

Moreover, the number of rotations, and as a result the circuit
depth’s, are an order of magnitude less in the NISQ-HHL

implementation in comparison to the uniformly controlled
rotation circuit. These results shows that when the hardware
will be able to support the specified numbers of qubits and
circuit depth’s, NISQ-HHL will achieve very good results.

| NISQ-HHL  Uniform | NISQ-HHL  Uniform

Assets 6 6 14 14

Rots 4 64 5 64

Depth 1877 12911 6514 11786

Prod 0.86 0.92 0.98 0.95
TABLE V

COMPARISON OF HHL PLUS CONTROLLED-SWAP TEST CIRCUIT
CHARACTERISTICS USING NISQ-HHL AND THE UNIFORMLY
CONTROLLED ROTATION GATE (“UNIFORM”) FOR THE 6 AND 14 ASSETS
PROBLEMS. WE COMPARE THE NUMBER OF CONTROLLED ROTATIONS
(“ROTS”), THE ZZMAX DEPTH AND THE INNER PRODUCT (“PROD”)
CALCULATED USING MEASUREMENTS COLLECTED FROM THE QISKIT
STATEVECTOR SIMULATOR.

This statement holds under the assumption that the vector
b can be efficiently loaded onto a quantum state, and the
matrix A is sparse and well-conditioned. We studied how the
condition number (x) of A scales with the number of assets
in the portfolio (V).

We first used daily prices from S&P 500 stocks starting
from 2019 to August 2021 to build A. Using linear regression
and discarding the first elements, we obtained an exponential
fitting: £ = 10001N+6:439 with R2 > 0.988. This result
is very dependent on the time interval considered. When
considering a bigger time-frame, from 2018 to August 2021,
we found a quadratic fitting: x = (0.315N + 1.4)% with
R? > 0.987. The condition number as a function of the
number of assets for this time-frame is shown in Figure 7. It is
also quadratic if we consider prior years as the starting point of
the interval. Additionally, the fitting coefficient is even lower if
we keep on extending to the past. This was tested up to 2015,
and in this case, the condition number is halved for 400 assets.
For all of these scenarios considered, conditioning methods [5,
6] will be needed to harness the theoretically proven speedup.
Note, we observed that, in practice, scaling each component
of A: (7,p,%) to the same order of magnitude, reduces the
condition number of A. This transformation is possible as it
only impacts the Lagrange multipliers, which are not relevant
to the resulting portfolio. Notice that b will have to be scaled
in the same way.

VI. RELATED WORK

Variational algorithms have been developed in the last
couple of years for optimization problems, such as the
Variational Quantum Eigensolver (VQE) [35] and Quantum
Approximation Optimization Algorithm (QAOA) [18]. They
rely on heuristics. Although their speedup is unproven, they
have shown great results when obtaining the ground-state
of molecules on NISQ devices [36]. More specifically, a
variational quantum linear solver [20] has been introduced last
year.

Regarding quantum annealing computation, a hybrid algo-
rithm for dynamic portfolio optimization with minimal holding
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Fig. 7. Condition number of the matrix A as a function of the number of the
S&P 500 assets considered. A is built with the assets’ historical data from
2018 to August 2021.

period was executed on the D-Wave quantum annealer pro-
cessor [37]. However, they are solving a different objective
function structure to the one introduced in this article. Like
variational algorithms, there is no guaranteed speedup.

Another approach is Grover Adaptive Search (GAS) that
has been used for global optimization problems in which
Grover’s algorithm [38] is employed to efficiently implement
Pure Adaptive Search (PAS) [39]. Its speedup has been proven
to be quadratic.

Contrary to these algorithms, HHL, assuming the normal-
ized b can be efficiently loaded onto a quantum state and A is
sparse and well-conditioned, has been proven to bring about
exponential speedup in N, i.e., the dimension of the system,
over the best classical linear solver. It is important to mention
that in order to achieve this exponential speedup, we can
not access the solution directly using exhaustive techniques
such as quantum state tomography. Instead, we could sample
from the quantum state to get a good approximation to the
allocation vector. Another approach [2] is to use the quantum
portfolio state to make calculations that are of interest to the
financial industry without classically accessing it. However,
HHL is still cumbersome to deploy on NISQ devices. NISQ-
HHL, introduced in this article, intends to bring it closer to
implementation.

VII. CONCLUSIONS

In this work, we introduced NISQ-HHL, a novel extension
of the HHL algorithm that incorporates an eigenvalue inversion
component suitable for NISQ devices. We executed it on a
NISQ device, the trapped-ion Honeywell System Model HI,
to optimize a S&P 500 portfolio by casting this problem as a
QLSP.

The first step of NISQ-HHL consists of using QCL-QPE to
obtain estimates of the relevant eigenvalues Ap. This variant of
QPE uses mid-circuit measurement, qubit reset and reuse, and
Quantum Conditional Logic (QCL). Contrary to the standard
implementation, QCL-QPE reduces the number of ancillas to

just one for an arbitrary bit precision. As a consequence,
we can reduce the number of qubits required dramatically,
which is crucial for near-term hardware. Moreover, QCL-QPE
replaces two-qubit gates with one-qubit gates controlled by
classical bits.

We experimentally showed that QCL-QPE achieves high
fidelity, between experimental and simulated measurement
distributions, for three-bit precision. Particularly, for four-bit
estimations, QLC-QPE achieved a higher fidelity than the
standard QPE. What is more, we developed an algorithm
that optimizes the scaling parameter v for the Hamiltonian
simulation required by QCL-QPE. We showed that the scaling
of A by the ~, obtained with the algorithm, enabled resolving
the relevant eigenvalues in the output distribution of QCL-QPE
more accurately. These estimates of the relevant eigenvalues
are used to implement a near-term efficient eigenvalue inver-
sion circuit, in which the rotations are conditioned on them.
In comparison to the uniformly controlled rotation approach,
the number of rotations in the NISQ-HHL implementation
is smaller, and as a consequence, the circuit is significantly
shallower.

We empirically demonstrated the validity of NISQ-HHL.
We obtained, with great fidelity, the optimal allocation vector
represented as a quantum state for a portfolio-optimization
problem with two S&P 500 assets by executing NISQ-HHL
on the Honeywell H1 system. We also showed that the NISQ-
HHL eigenvalue inversion circuit is significantly more efficient
than the uniformly controlled rotation gate method. This is
because we reduced the number of controlled rotations, and
as a consequence, the circuit depth’s.

Moreover, we calculated the inner product between the
quantum portfolio state and the classically calculated solution
loaded as a quantum state. Using NISQ-HHL we obtained a
higher inner product than the uniformly controlled rotations
method when executing on hardware and in the Qiskit stat-
evector simulator. Finally, we showed that NISQ-HHL can be
easily applied to a portfolio of any given size.
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