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Abstract—Over the recent years, Federated machine learning
continues to gain interest and momentum where there is a
need to draw insights from data while preserving the data
provider’s privacy. However, one among other existing challenges
in the adoption of federated learning has been the lack of fair,
transparent and universally agreed incentivization schemes for
rewarding the federated learning contributors. Smart Contracts
on a Blockchain network provide transparent, immutable and
independently verifiable proofs by all participants of the net-
work. We leverage this open and transparent nature of smart
contracts on a blockchain to define incentivization rules for
the contributors, which is based on a novel scalar quantity -
federated contribution. Such a smart contract based reward-
driven model has the potential to revolutionize the federated
learning adoption in enterprises. Our contribution is two-fold:
first is to show how smart contract based blockchain can be a very
natural communication channel for federated learning. Second,
leveraging this infrastructure, we can show how an intuitive
measure of each agents’ contribution can be built and integrated
with the life cycle of the training and reward process.

Index Terms—Machine Learning, Blockchain, Federated
Learning, Fairness in Federated Learning, Systems infrastructure
for Federated Learning

I. INTRODUCTION

THE concept of federated machine learning was intro-
duced around 2016[1]. It relies on the principle of remote

and distributed execution of machine learning algorithm, and
the ability to share and aggregate individual models in a
secure and anonymous manner. Therefore, it is implicit that
federated machine learning would depend on availability of
secure communication channels between remote participants
to allow distribution of locally trained individual models.

Blockchain became popular with launch of bitcoin around
2009[2]. Blockchain is a form of distributed ledger technology
that relies on honest majority members in a network to validate
the accuracy of the executed transactions on the network. It
accomplishes this by allowing each of its members to execute
a piece of turing complete software code (a.k.a smart contract),
in an independent fashion without any external influence
or interventions. Although the proposed solution could be
extended to other Blockchains, this paper focuses primarily on
Ethereum’s implementation. Therefore, Blockchains can help
the deployment of federated learning by both bringing dataset
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on a unique, structured, ledger (with potential privacy layers on
it), and by guaranteeing the security, accuracy and correctness
of the distribution of the model’s parameters. This could be
of particular value in compliance and anti-money laundering
cases requiring the reconciliation of multiple sensible dataset,
and in which the use of fraud and anomaly detection models
could improve manual audits and investigations[3].

However, because of the distributed nature of validation, in
current blockchains, unless it implements a privacy layer, all
communications between any two nodes is visible to rest of
the nodes of the network. Preserving privacy of transaction in
a blockchain, while still allowing all nodes to participate in
consensus process is a difficult problem to solve. This is an
active area of research, and includes technologies such as Zero
Knowledge Proof (zKP). The foundations of zKP is based on
interactive proofs, as described in previous works[4] [5] [6].
However, setup of those continues to be an onerous process,
in real world implementation.

This poses a challenge for federated learning, that requires
maintaining the privacy of the individual participant’s machine
learning models (and model gradients too) and anonymity of
the model contributor. The proposed implementation solves
this challenge via dynamically generating asymmetric and
symmetric keys for each federated learning round ( details
to follow in subsequent sections), with a caveat that the
aggregation server node is conceptually akin to a Trusted
Execution Environment (TEEs), but at a consortium level[7].

However, even with consortium trusted aggregation server
implementation, the risk of lack of contribution in the overall
federated learning rounds from individual nodes continues
to exist. In addition, the malicious nodes could potentially
send a misleading model that could skew the efficacy of the
aggregated models. One of the potential ways to address the
above challenges could be to have the aggregation server detect
somehow, such behavior and drop those contributors from
the collaboration process. Unfortunately, this solution tends to
centralizes the solution and lack of transparency in the overall
process.

The current paper proposes a solution to avoid the above
potential pitfalls by leveraging unique and transparent smart
contracts design on blockchain to reward honest/active (
and penalize malicious/under performing) participants in the
learning process, based on computing a novel, scalar quantity
- federated contribution. In our proposed solution, smart
contract is responsible for reward ( or penalty) specification
and distribution (or fees) as well, through immutable federated
contribution records on blockchain.
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II. RELATED WORK

A. Federated Learning

Federated learning is a distributed machine learning setting
where the goal is to train a high quality global model, while
training is done locally and privately on individual participant
(federated learning client). The training is done across large
number of clients. After the local models are trained, the
improved local model gradients are sent securely over the net-
work to the federated server for federated aggregation[8]. This
paper is focused primarily on horizontal federated learning.

B. Blockchain

There are several implementations of blockchain - Bitcoin,
Ethereum, Hyperledger Fabric etc. Ethereum[9] is a decentral-
ized, open-source blockchain with smart contract functionality.
Ether is the native cryptocurrency of the platform. After
Bitcoin, it is the second-largest cryptocurrency by market
capitalization. In addition to existing public Ethereum mainnet,
there exists Ethereum for Enterprises[10] that offer certain
enterprise desired features. Some of these features include
more control on nodes in the network, higher performance,
difference in cost, node permissioning and different privacy
implementation.

In general, there are three main types of Blockchains[11]
• Public Blockchain: a blockchain that anyone in the world

can read, anyone in the world can send transactions to and
expect to see them included if they are valid, and anyone
in the world can participate in the consensus process.

• Consortium Blockchain: a consortium blockchain is a
blockchain where the consensus process is controlled by
a pre-selected set of nodes.

• Fully private Blockchains: a fully private blockchain is a
blockchain where write permissions are kept centralized
to one organization. Read permissions may be public or
restricted to an arbitrary extent.

Some implementations of Blockchain, such as Ethereum-
support both public and Consortium implementations. One-
such enterprise/consoritum version of Ethereum is Consen-
sys Quorum . The proposed solution in this paper applies to
the Consortium (Enterprise) blockchain where the identity of
individual nodes are known to the Consortium Operator ( a.k.a.
Network Operator).

There are few key components of a Blockchain eco-system
that are relevant to this paper. Those include namely Smart
Contract, Events and Oracles.

C. Smart Contract on Blockchain

A smart contract[12] is simply a program that runs on the
Ethereum blockchain. It’s a collection of code (its functions)
and data (its state) that resides at a specific address on the
blockchain. Smart contract are permission-less, i.e. anyone
can write a smart contract and deploy it to the network.
The smart contract code is visible to all participants on
the network, and any participant can independently execute
that code to validate the outcome[13]. Smart Contracts on
Ethereum are written in its own programming language called

Solidity. Events on Ethereum[14] are well defined ways of
asynchronously exchanging data among the participants of
blockchain network. In Solidity, events[15] are dispatched as
signals, that the smart contracts can fire. DApps, which are
essentially decentralized applications, or anything connected to
Ethereum JSON-RPC API (an interface exposed by blockchain
network for connectivity and programmatic interactions with
blockchain), can listen to these events and act accordingly.
Event can also be indexed, so that the event history can be
searched later.

D. Events on Blockchain

In Blockchain, when a transaction is mined, smart contracts
can emit events and write logs to the blockchain that the
frontend can then process. These events can then be used to
communicate with a smart contract from application frontend
or other subscribing applications. Events are not considered as
a state change on Blockchain, hence they consume very less
gas price[16], in comparison to state change transactions on
Blockchain.

E. Federated learning and Blockchain

There is a growing literature on federated learning imple-
mentations through blockchain, indicating a sign of the natural
complementarity between these two technologies. Since [17]
proposed using blockchain to maintain the global model with
community and reach a consensus, a number of papers [18],
[19], [20], [21] explored this avenue, but mainly using the
blockchain as a safe and coherent storage for the global model,
and fail to make full use of the potential of smart contracts
to both coordinate the learning, and through that compute
measurement functions of how each agent is contributing to
the global model.

For that measurement of contribution framework we build
on [22] proposal to leverage the blockchain to evaluate updates
from nodes, and potentially penalize malicious nodes. Shapley
values have shown great results in explaining the contributions
of individual features in theoritically any machine learning
model. It is our hope to further bridge these two litera-
tures, to be able to automatically compute different variations
of federated learning contributions through blockchain-based
smart contract as communication medium in federated learning
settings. Our main contribution is to showcase how a natural
infrastructure and life cycle could support these, leveraging the
cryptographic, distributed computing, and consensus mecha-
nisms within blockchain.

F. RSA and AES algorithm

Asymmetric key cryptographic algorithm are popular cryp-
tography techniques, which focus on using public-private key
pair for encryption. In RSA algorithm[23], the fundamental
idea is to use a computationally impossible, long prime
numbers based public key and private key. Public key can
be used to encrypt data, where as it can only be decrypted
using private key, which is kept privately and securely with
the owner. In case of symmetric cryptography, like of AES

https://consensys.net/quorum/
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algorithm[24], the same key would be used for encryption and
decryption. Thus special care needs to be given to safeguard
the symmetric key itself.

G. Measuring contributions in federated learning

In recent work[25], measurement of contributions towards
improvising the global model in federated learning has been
described, for both horizontal and vertical class of feder-
ated learning. Authors have discussed the approach of using
‘deletion method’ for horizontal federated learning approach,
where the change in testing accuracy is considered by various
iterations of training, with each iteration, we remove the data
points from a single client. This way, we measure the degra-
dation in model performance, and then infer the contributions
accordingly by the federated clients. In case of vertical feder-
ated learning, Shapley values are computed for each feature.
Shapley values gives a strong quantification of each feature’s
importance, followed by a mathematical approach of inferring
contributions of parties in vertical federated learning. There
are, however, a multiplicity of ways in which the Shapley value
can be implemented, with very disparate results, as shown in
[26]. Our contribution aims to build a mathematical foundation
to compute contribution of participants in federated network
by focusing on weights differences using Frobenius Norms,
instead of training data differences like in Shapley values.

III. BLOCKCHAIN FOR FEDERATED COMMUNICATION

Earlier works have proved REST, RPC, gRPC[27] as pop-
ular choices for communication between federated server and
clients. For more secure communication, various battle-tested
approaches include network firewalls, SSL and token based au-
thentication. Though these methods provide a secure medium,
they lack the transparency in the communication channel
itself, which can be well established by using blockchain.
This paper proposes use of smart contracts on (ethereum
based) Blockchain, which provides a decentralized mechanism
of communication between peers and the federated server.
While smart contracts provide transparency in the implemen-
tation, the communications at blockchain level are secured
via asymmetric cryptography techniques for encryption and
modification of state on the blockchain network. This also
entrusts the emission of events for communication between
federated server and contributor nodes with extended level of
security and transparency.

Owing to the “consortium blockchain network”, where in-
dividual participants are trusted enterprises and organizations,
there is a likelihood of participants acting as a bad actors is
low. Further, in this network of contributors, it is quite possible
that there could be wide range of variation in contributions
from different participants or even extreme scenario of some
participants being only a benefitor, and not contributor ( and
vice versa). These are few of the possible scenarios in con-
sortium governed federated learning network. To manage and
counter these measures through incentives (both reward and
penalty), smart contracts provide a transparent and immutable
way of maintaining contributions record on the blockchain.
Based on the contribution record from blockchain, a given

participant would be either rewarded or penalized through
on-chain blockchain tokens, or through off-chain mechanism
established by consortium.

A. Performance Characteristics of Blockchain

A well-known constraint of existing blockchain implemen-
tations are around performance, usually measured in through-
put and latency. Further, current Blockchain implementations
also suffer from Blockchian Trilema ( a coin termed by
Vitalik Buterin) - speed, security and decentralization. These
constraints are quite true and applicable for high volume, low
latency networks where speed of transaction is quite critical.
However, sharing models over blockchain in an enterprise
network does not require significant high throughput sine the
frequency of model updates is expected to be relatively low. In
addition, latency is also not a critical factor since aggregation
of models from each participant are not necessarily time
sensitive. For example, if a model update was missed by the
aggregation server in one aggregation cycle, it will be picked
up in the subsequent one without losing its impact.

B. Life-cycle of a federated aggregation event

Federated learning in a consortium network comprises of a
consortium trusted and security hardened aggregation server.
All the participants, who are clients in the federated learning
ecosystem listen to the blockchain events from a smart contract
(ethereum smart contracts, as ethereum is the blockchain
network being used). Table I gives an overview of a typical
federated learning round. In the proposed implementation, the
Aggregator Server manages the events that orchestrate the
Federated Learning cycle between clients and aggregator.

Since the orchestration of events is delegated to the ag-
gregator, this design allows individual participants remain
lightweight and only focus on local model improvisation. The
set of possible events from Aggregator server includes initial
distribution of base model, subsequent federated learning
cycle events, contribution announcement on the chain and
contribution fees notification.

C. Encryption of event data

In the previous sections, we discussed about how blockchain
ensures required security and privacy at its core. Though data
on blockchain is immutable, the privacy is not guaranteed,
because of the very nature of how blockchain works. A
consortium network with enterprise participants, there is a
high possibility of participants not comfortable with revealing
their model weight gradients to peer participants. If local
model weights (and gradients) are revealed, this posses risk
of revealing statistical properties of the data from individual
participant, if not the actual data.

In order to privately send model weights from participant
to federated server on blockchain, in a consortium network,
asymmetric encryption using RSA cryptography is proposed
in the paper. Each new federated learning round is published
as blockchain event, federated aggregation server generates a
new set of RSA key pair. The private key of the pair stays with
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TABLE I
LIFE-CYCLE OF A FEDERATED LEARNING COMMUNICATION EVENT. TIME

COLUMN REPRESENTS RELATIVE TIMESTAMP, WHERE INCREMENT IN
TIMESTAMP SUGGESTS RELATIVE INCREMENT, NOT THE ABSOLUTE

INCREMENT. EVENT IS THE RESPECTIVE EVENT TYPE ON
COMMUNICATION ROUND. ‘ACTION ON’ COLUMN SHOWS THE EXPECTED

ACTION FOR WHICH ROLE, WHETHER CLIENT OR SERVER. ‘PUBLISH’
COLUMN DEPICTS WHETHER THE EVENT IS PUBLISHED AS BROADCAST

ON BLOCKCHAIN OR NOT.

TIME EVENT ACTION
ON-

PUBLISH?

tk INITIATE FL ROUND SERVER
√

tk+1 RECEIVE INITIATE EVENT CLIENT(S) ×

tk+2 ENCRYPT LOCAL MODEL;
WITH KEY RECEIVED IN
PREVIOUS STEP

CLIENT(S) ×

tk+3 PUBLISH ENCRYPTED LO-
CAL MODEL

CLIENT(S)
√

tk+4 AGGREGATE ENCRYPTED
LOCAL MODELS

SERVER ×

tk+5 BROADCAST NEW
GLOBAL MODEL

SERVER
√

the server, as this will be used by the server in later stages to
decrypt the encrypted event message cipher. The public key
is sent across the network to all the participants. Participant
will generate an AES key for encrypting local train model,
and then use the public key received from federated server
to encrypt the AES key[28]. With RSA keys revolving for
every new federated learning round, this decreases the chances
of compromising model information over the blockchain, for
any given participant on the network. One thing to note here
is - only the the event data containing participant’s local
model weights needs to be encrypted. Other event data like
global model, which is sent from server to clients, initiation
of federated round broadcast does not require encryption, as it
does not contain sensitive data among the peers in blockchain
network.

D. Smart Contract for communication and contribution to-
wards Federated Learning

In the previous sections, smart contracts have been de-
scribed as a way of executing Turing complete programs on
blockchains. Further, as referred in related work, Ethereum
smart contracts also have a concept of events, which are
generated after a transaction is mined on the Blockchain net-
work. Events can carry additional information and parameters
that can be used by subscribing applications. It is important
to understand that events generated, when published by the
participants or the federated server, would be a broadcast.
Dynamically generated encryption keys, explained in earlier
section would safeguard the privacy interest of the federated
clients. Federated clients would have to listen to the agreed
upon Ethereum event from a smart contract, in order to receive
the event and take necessary actions, essentially making smart
contracts a primary pub-sub[29] channel of communication.

In the current paper, smart contracts are proposed as a
mechanism to maintain transparent, immutable records of

contributions, which improvises (or degrades) the global
federated learning model. The computation to determine the
contribution of individual in the federated learning round (de-
scribed in subsequent section) is performed off the blockchain,
considering the resource and computation constraints. After
the computation is completed, the records are published on
blockchain, anonymously, for each participant to consume.
This makes the contributions (and indirectly participants ex-
pense fees) transparent. The transparency of contributions
from each participant promotes an honest behavior on the
network.

IV. FEDERATED AGGREGATION AND CONTRIBUTION

Federated learning with centralized aggregation
server implements various ways to implement federated
aggregation[30], like FedAvg, FedSGD, etc. Assuming the
number of clients is quite large (in order of 105 ), if few
of the clients are acting as bad actors, or clients with noise
in training data, their impact towards the global model is
smoothed by averaging algorithm. But in case of consortium
setting, where number of clients is not that huge (in order of
102 ), the local weights of federated client with noisy data or
malicious intention would impact the overall weight(s) of the
federated learning model. In order to tackle the challenge,
we are proposing a novel way of computing a novel scalar
quantity, federated contribution across the network, and
using smart contract to publish and store on the blockchain
(as discussed in earlier section). As compared to earlier
work[25], federated contribution establishes a way to define
contribution of each participant in federated learning setting,
whether they might have train data of similar statistical
properties, or non overlapping (orthogonal in feature space)
statistical properties.

A. Federated aggregation
FedAvg[31] is one of the popular algorithms in federated

aggregation domain, which ensures complete and optimal solu-
tion, provided the learning rate and local learning contribution
is accurately considered. Inspired from the previous works, our
problem formulation for non-IID (or IID) data, which assumes
more real world problem setup, in a consortium blockchain
network, we have formulated our problem as described below
-

min
θ∈Rd

f(θ) :=

K∑
k=1

pkFk(θ)

where k as index for client, θ as the set of model weight
parameters for any generic machine learning algorithm, which
can be modified for federated learning setting. f(θ) is the
global objective function, Fk(θ) is the local objective function
for client k, pk is the learning importance factor - a scalar
value to determine individual client’s, local model’s relative
importance, and K is the total number of clients. Considering
pk as learning importance factor in federated learning, it is
assumed that -

K∑
k=1

pk = 1
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With fedAvg as algorithm for aggregation, the individual
weight updates for t+ 1 iteration, lth layer can be defined as
-

wt+1,l ← wt,l + α

K∑
k=1

pk∇Fk(θ)

where wt,l is weight for tth iteration at lth layer and α is the
learning rate parameter.

B. Federated learning contribution

In previous sections, motivation for federated contribution
is discussed. Intuitively, federated computation is a scalar
quantity, which depicts the deviation, or divergence of two
machine learning models. We will now define the federated
contribution mathematically.

γk := ‖βk‖2

βk := 〈‖δk1‖F, ‖δk2‖F, . . . , ‖δkL‖F〉

δkl := wglobal
l,t −wk

l,t+1

γkrel :=
γk∑K
k=1 γ

k

where γk is the absolute federated contribution of client k,
‖.‖p represents pth norm, ‖.‖F represents Frobenius norm[32],
L represents the final layer’s weight matrix of a generic
machine learning model. δkl represents difference of model
weight parameter matrix for lth layer of kth client. wk

l,t+1

represents model weight for lth layer of kth client at t+ 1th

iteration. wglobal
l,t is the model weight for lth layer of global

model at tth iteration. γkrel is relative federated contribution
of client k.

For any generic machine learning algorithm, like linear re-
gression, logistic regression, neural networks, etc, the primary
intent is to find a weight matrix, or a set of weight matrices.
These weight matrices are computed using loss functions and
gradient descent approaches, in various formats depending
upon the algorithm. Assuming the representational vector,
defined βk, with minimum size of the set as 1, we can define
an each element of βk as Frobenius norm of δkl . Here, δkl ,
as defined previously, represents the element wise difference
of weight matrices (order of subtraction doesn’t matter, as
Frobenius norm computes square of the element). We have
considered the element wise difference of both the weight
matrices for each layer, as it is inverse operation to the gradient
descent and weight updates, where we perform addition of
improvements, as described in problem formulation earlier.
Frobenius norm is well established method to find the mag-
nitude of a matrix from origin of a hyperspace Rd. When we
compute Frobenius norm for δkl , it essentially represents the
magnitude of deviation between two weight matrices(global
weight matrix of previous iteration and local weight matrix of
current iteration, for layer l). The vector βk represents a set of

magnitudes of deviation of local model’s weight matrices from
global model’s weight matrices respectively, as an independent
and individual axis. Finally, in order to calculate value γk for
client k, we calculate 2-Norm, which is the euclidean norm
of βk. This represents the magnitude of distance from origin,
which quantifies the combined deviation of local model (set of
weights) from global model (again, set of weights) as a scalar
quantity.

Inferring γk, in case of federated contribution, federated
aggregation server calculates γk for each kth client. If the
federated contribution value is relatively high, that means
the given client has contributed to a higher degree. While
describing contribution to a higher (or lower) degree in
federated contribution, it practically quantifies the contribution
in modifying the global model, by training on larger data
points, or by training over data points which are having distant
statistical properties from earlier training data, or may be
higher noise in data. This intuitively can be thought as - the
divergence of local model after training on new data points
will be more, if higher gradient descent updates are performed.
This can be because of variance in new data, use of better data
points for local training rounds or greater training size. In case
of divergence being relatively smaller, one can infer about
participant using noisy or unrelated data points, which may
not be acceptable for global federated model. Our framework
would thus point at a possible way to fix a key limitation
of the Shapley value framework (which we hope to build the
link with in a future paper) - the fact that it only provides
valuations for points within a fixed data set, and does not
account for statistical aspects of the data and does not give a
way to reason about points outside the data set.

V. EXPERIMENTS

In the paper, the experiments to validate the hypothesis of
using blockchain smart contracts and federated contribution
has been carried out with setting up a (5 + 1 =)6 ethereum
blockchain permissioned nodes setup in AWS cloud. Within
this network, one of the node acts as federated aggregation
server, and other three nodes act as federated clients. It is a
consortium blockchain setup, with each individual client nodes
own set of data. Figure 1 shows the architecture representation
of the proposed experimental setup. The federated server
node runs a python daemon process which listens to the
events generated by smart contracts on the network. Upon
receipt of events and based on event types, it either sends the
global model to every node as a broadcast, or computes the
aggregated version of the global model with latest gradients of
local training, from individual federated clients. On federated
clients, a similar python application is being executed, which
listens to events and sends the encrypted local model, as
required. It also acts as a service, which serves (exposing
remote REST based endpoint, which can be consumed by
any other program to predict, based on input data) machine
learning model, and also is responsible for re-training of new
batch of data points. The applications, which are responsible
for directly interacting with blockchain nodes are termed as
“dApp”, as depicted in figure 1, which essentially means
decentralized applications.
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Federated Aggregator server node deploys both s ‘commu-
nication’ and ‘contribution records’ smart contracts. . All
of the federated client nodes leverage the address of these
two public contracts as a communication channel both for
publishing events and listening to any generated events as
well. The interface of the smart contract has been discussed
in further.

Fig. 1. In the above architecture diagram, individual nodes are running
decentralized applications, with processes to serve and re-train data models.
Two smart contracts, one for communication and one for contribution is
deployed on the blockchain. Federated server is responsible to send the
dynamically generated RSA key pair’s public key, which would be used
to encrypt the newly generated AES key of participant, used for model
encryption. Encrypted models are published on the blockchain. Even though
all the participants can receive the private encrypted model gradients, only
the federated aggregation server can decipher and use the model, as it posses
the RSA private key of respective public key.

A. Data description
In the paper, to test the hypothesis against standard data set,

MNIST[33] and Fashion-MNIST[34] data sets have been used.
In both the data sets, it has 10000 test data points, 60000 train
data points and 10 target classes. We split the training data as
10000 for initial, “genesis” global model and remaining 50000
as training data for federated clients. For both the data sets,
we have performed our experiments in two ways, by splitting
our data sets described below -

1) Independent and Identical Data: The data is randomly
split and distributed across all the federated clients, each
having 10000 training data points with all the 10 target
classes.

2) Non-Independent and Identical Data: The data is split
and distributed across all the federated clients, each of
the clients having training data with only 2 target class.

B. Blockchain smart contract interface
As discussed earlier, we have used two ethereum based

smart contracts, one for communication and one for recording

Output

(1024) (512) (128)
(728)

(10)

Fig. 2. In the architecture, the input layer contains 728 neurons, after
flattening the image. Output layers contains 10 neurons, as the data set has
10 image labels or target classes. It contains 3 fully connected, hidden layers,
each having 1024, 512 and 128 neurons respectively. The hidden layers used
relu, and output layer used softmax as the activation functions.

contributions transparently on blockchain. Interface for both
of the smart contracts have been defined as follows -
// Communication : Interface
pragma solidity >=0.8.0 <0.9.0;
contract Communication {
event BCEvent(
uint256 timestamp,
bool is_encrypted,
bytes event_type,
bytes body

);
function publish(
uint256 timestamp,
bool is_encrypted,
bytes memory event_type,
bytes memory body

) public returns(uint ack) { }
}

// Contribution : Interface
pragma solidity >=0.8.0 <0.9.0;
contract Contribution {
uint len = 5; //5 federated clients
uint[] memory _clients = new uint[](5);
function set_contribution(
uint client_id,
uint relative_contribution

) public returns(uint ack) {
//only owner(federated server)
//modifies state of _clients
}
function get_contributions()
public view returns (uint memory) { } }

C. Neural network for image classification

Since the each image data in MNIST and Fashion-MNIST
is 28x28 gray scale image, we have used artificial neu-
ral network[35] for image classification. Figure 2 describes
the architecture of the neural network in depth. We have
used adam[36] optimizer and sparse categorical cross en-
tropy[37] as loss function, with 5 training epochs.

D. Results

Based on the data, blockchain network with smart contracts
and neural network architecture described in earlier sections,
we performed various experiments to test our hypothesis of
computing federated contribution against various settings like
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higher contribution of a smaller group of participants, lower
contributions by a subset of participants, noise in local data,
while training by individual nodes. We have also calculated
the overall accuracy of image classification of the aggregated
model. In our experiments, we have changed the size of
training samples, as it is the variable of the experiment.
For each set of conditional environment for experiments, we
have considered results for 4 different cases. The 4 cases
are as (i) MNIST data with non-IID split (ii) MNIST data
with IID split (iii) Fashion-MNIST data with non-IID split
and (iv) Fashion-MNIST data with IID split. A well known
and common observation across all the experimental setting is
increase in machine learning model’s accuracy performance,
with increase number of training samples.

Figure 3 shows the performance of the aggregated machine
learning model, from various clients. We do observe better and
stable performance in case of data being split, across all the
clients in IID manner. Figure 4 shows the federated contri-
bution being increasing with increase in training data sample
size. Also, since all the clients in this setting have contributed
equally, their federated contribution values are quite close. One
thing to notice, which is evident across all experiments (can be
observed in the graphs) is, increase in federated contribution
value, with increase in training size. This essentially validates
our hypothesis of federated contribution being dependent on
number of weight updates, which is directly proportional to
higher training data (or training iterations). For distinct visuals,
we have shown client 3 in always green colour, in all the
visualizations.

Figure 5 depicts the experiment, where client 3 is under-
performing by training on only 10% of what other participants
are training. We can observe how the federated contribution
value for client 3 is very low, as compared to other participants.
Figure 6 whereas shows the opposite, where client 3 trains
on 10 times more data points, puts in extra effort, logically,
than other participants. This shows higher value in federated
contribution for client 3, as relatively compared to others.
Figure 7 is the final setting, where we added Gaussian noise,
with noise value between 0 and 1, in training data of client 3,
which essentially shows depletion in federated contribution of
client 3, relative to others.

VI. CONCLUSION

In our paper, we studied our proposal of using smart
contracts to establish a fair, transparent, secure and immutable
incentivization mechanism in a consortium blockchain net-
work for federated learning. We proposed a novel approach
to calculate a unique scalar quantity, federated contribution,
which quantifies the contribution of each participant in fed-
erated learning. Federated contribution is compatible with the
machine learning algorithms which relies on weight parame-
ters computed by gradient descents. We justified our proposed
approach both empirically and theoretically. For future work
in the given area, one can extend the federated contribution to
non-gradient descents algorithms, or to heterogeneous feder-
ated learning. In the proposed method of calculating federated
contribution, and using the relative federated contribution val-
ues for reward (or penalization) mechanism, we validated that

Fig. 3. (a) Accuracy of aggregated model in % vs training data sample size
for MNIST data, split in Non-IID format (b) Accuracy of aggregated model
in % vs training data sample size for MNIST data, split in IID format (c)
Accuracy of aggregated model in % vs training data sample size for Fashion-
MNIST data, split in Non-IID format (d) Accuracy of aggregated model in
% vs training data sample size for Fashion-MNIST data, split in IID format

Fig. 4. (a) Federated contribution of equally contributing clients vs training
data sample size for MNIST data, split in Non-IID format (b)Federated
contribution of equally contributing clients vs training data sample size
for MNIST data, split in IID format (c) Federated contribution of equally
contributing clients vs training data sample size for Fashion-MNIST data, split
in Non-IID format (d) Federated contribution of equally contributing clients
vs training data sample size for Fashion-MNIST data, split in IID format

it effectively penalizes under-performing participants, rewards
over-performing participants and penalizing participants with
noisy or malicious data points. This justifies our proposal of
considering federated contribution as an adequate mechanism
of quantifying participants’ contribution in the consortium
blockchain network. Future work will aim at building further
the conceptual bridge between our weight-based contribution
measure and Shapley values, under modified axioms that
reflect the specificities of federated machine learning settings.
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Fig. 6. Federated contribution of lowly contributing clients, but client
3 vs training data sample size for MNIST data, split in Non-IID format
(b)Federated contribution of lowly contributing clients, but client 3 vs training
data sample size for MNIST data, split in IID format (c) Federated contribution
of lowly contributing clients, but client 3 vs training data sample size for
Fashion-MNIST data, split in Non-IID format (d) Federated contribution of
lowly contributing clients, but client 3 vs training data sample size for Fashion-
MNIST data, split in IID format
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