
SMPAI: Secure Multi-Party Computation for
Federated Learning

Vaikkunth Mugunthan1,3

vaik@mit.edu
Antigoni Polychroniadou3

antigoni.o.polychroniadou@jpmchase.com

David Byrd2,3

db@gatech.edu
Tucker Hybinette Balch3

tucker.balch@jpmchase.com

1Massachusetts Institute of Technology
2Georgia Institute of Technology

3J.P. Morgan AI Research

Abstract

Federated Learning is a technique that enables a large number of users to jointly
learn a shared machine learning model, managed by a centralized server, while the
training data remains on user devices. That said, federated learning reduces data
privacy risks.
Privacy concerns still exist since it is possible to leak information about the training
data set from the trained model’s weights or parameters. Most federated learning
systems use the technique of differential privacy to add noise to the weights so
that it is harder to reverse-engineer the individual data sets. Differential privacy
reduces the risk but does not eliminate leakage from the data. The combination of
differential privacy and cryprogrpahy can eliminate leakage.
As opposed to prior works, we propose a new mechanism that protects against
a wide range of attacks. Our mechanism is based on advanced cryptographic
techniques, in particular, secure multiparty computation and differential privacy.
Our model has been developed and tested on the ABIDES environment simulating
mobile device networks.

1 Introduction

Modern institutions routinely need to conduct analysis of large data sets stored across multiple
servers or devices. A typical response is to combine those data sets into a single central database, but
this approach introduces a number of privacy challenges: The institution may not have appropriate
authority or permission to transfer locally stored information, the owner of the data may not wantit
shared, and centralization of the data worsens the potential consequences of a data breach. For
example, the mobile app ai.type collected personal data from its users’ phones and uploaded this
information to a central database. Security researchers gained access to the database and obtained the
names, email addresses, passwords, and other sensitive information of 31 million users of the Android
version of the app. Such incidents highlight the risks and challenges associated with centralized data
solutions.

One approach to mitigate the above concerns is to analyze the multiple data sets separately and share
only the resulting insights from each analysis. This approach is realized in a recently-introduced
technique called federated analysis. Federated learning, already adopted by large companies like

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Google, allows users to share insights (perhaps the parameters of a trained model) from the data on
their laptops or mobile devices without ever sharing the data itself. For instance, email providers
could use federated learning to reduce the amount of spam their customers receive. Instead of each
provider using its own spam filter trained from its customers’ reported spam email, the providers
could combine their models to create a shared spam-detection mechanism, without sharing their
individual customers’ reported spam emails. It is still possible, however, for a malicious party to
potentially compromise the privacy of the individual users by inferring details of a training data set
from the trained model’s weights or parameters. It is important to protect sensitive user information
while still providing highly accurate inferences.

Simply anonymizing data is no longer enough to guarantee the privacy of individuals whose infor-
mation has been collected, due to the increasing prevalence of database reconstruction attacks and
re-identification from correlated data sets. Differential privacy [12] can help prevent such reverse-
engineering by adding noise to the input data set, to intermediate calculations, or to the outputs.
Then, even if the input data set is reconstructed, it is not the exact data of any user. More formally,
differential privacy is a mathematical concept that guarantees statistical indistinguishability for in-
dividual inputs by perturbing values. The use of differentially-private machine learning algorithms
in centralized settings is widely discussed in the literature, and the technique has been adopted by
major companies; for example, Apple uses it in web search auto-completion. The application of
differential privacy adds a layer of randomness so that adversaries with additional information still
have uncertainty over the original value. There is an obvious trade-off: adding randomness to the
collected data preserves user privacy at the cost of accuracy. Proper application of differential privacy
ensures that meaningful insights can still be derived from the aggregated data.

One solution to the above problem, which guarantees privacy without compromising accuracy, is
secure multi-party computation (MPC)[14, 6, 9, 2]. Using Secure MPC, multiple parties collaborate
to compute a common function of interest without revealing their private inputs to other parties. An
MPC protocol is considered secure if the parties learn only the final result, and no other information.
For example, a group of employees might want to compute their average salary without any employee
revealing their individual salary to any other employee. This task can be completed using MPC, such
that the only information revealed is the result of the computation (i.e. the average salary). Tying
these approaches together, we arrive at secure federated learning, which can be achieved as follows:
after locally training a model on their individual data, users send the weights (parameters) of their
model to the server using an encryption scheme which still allows the server to perform computations
on the encrypted data; specifically, the server can compute a weighted average of all the encrypted
weights received from users, but cannot discover the original weights for any user. A recent line of
investigation has constructed secure federated learning using techniques from MPC.

Because MPC reveals information only about the final result, and not any of the inputs, a solution
based on MPC seems ideal. However, in some scenarios, just the result can be enough to reveal
information about the inputs. For example, in the case of employees computing their average salary,
once the result is known, if all but one of the employees work together, they can easily determine
the salary of the final employee. By applying differential privacy on top of MPC, we can construct a
system that protects from even this type of extreme collusion attack. If we add noise to each input,
the final calculation will still be accurate within known bounds, but we will eliminate the possible
leakage of any inputs from the output. In the previous solution which used only differential privacy,
the server would know the “noisy” private weights of each user. In the solution which combines MPC
and differential privacy, the noisy weights sent to the server are also encrypted such that the server
can only calculate the result, and cannot infer anything about even the noisy weights of any particular
user. The system is thus now fully private.

While there have been previous constructions which combine distributed differential privacy [13, 8,
10, 3] and MPC, we take a different approach. Roughly, in prior works each client chooses his/her
local differential private noise. Contrarily, we offer models where the differentially private noise for
each party is unknown to the party and is generated in a distributed manner from other parties. We
will see in the next section why this approach achieves stronger security guarantees than previous
works.

2

2 Our Approach

In federated learning, a machine learning model is learnt in an iterative way, repeating four steps:
1) the server chooses a set of users to compute an updated model; 2) each client computes a local
trained model update its local data; 3) the updates are sent to the server; and 4) the server aggregates
these local updates to construct a global model. In this paper, we consider logistic regression. In
particular, the client’s update includes the weights of the logistic regression. The server receives the
weights from all the clients at each iteration and computes the averaged model.

Eliminate weight leakage: In order to hide the weights from the server, we use secure MPC
techniques, where each client sends his/her input to the server in an encrypted way. In particular, our
secure weighted average protocol running across n clients is based on the protocol of [4]. Henceforth,
all operations are performed modulo some bound p. In the setup phase, every pair of clients Ci and
Cj will share some common randomness rij = rji which is secret and known only to these two
clients. Then at each iteration of the logistic regression, client Ci sends its weights masked with these
common random strings, while adding all rij for j > i and subtracting all rik for k < i. That is, Ci
sends to S the following message for his/her data xi:

w̄i := (wi +
n∑

j=i+1

rij −
i−1∑
k=1

rki) mod p

In order to establish common randomness between each pair of clients, each pair of clients just run
Diffie-Hellman Key agreement protocol [7] (see Section 4 for more details)

A 3-party example is given in Figure 1. Note that the weights are encrypted via the use of the common
randomness. The values w̄ reveal nothing about the weights w. Also in our protocol there is a way to
reuse the common randomness for all the logistic regression iterations. That said, clients only need to
communicate once at the beginning of the protocol. In the next iterations they only communicate
with the server.

Eliminate weighted average leakage: In our protocol the weights are completely hidden from
the server, nothing about them is being revealed. However, the output of the computation, i.e., the
weighted average can reveal some information about the weights and subsequently the local data sets.
Imagine a scenario where n− 1 out of the n clients collude. Then, based on the revealed weighted
average, the n− 1 clients can learn the weight of the single non-colluding client. We would like to
avoid such a leakage. To this end, we can apply differential privacy in the MPC protocol. That said,
each client will send to the server ‘noisy’ encrypted weights. More specifically, each client chooses a
local noise term and add the noise to his/her weights and then encrypt them. Now if n− 1 clients
collude they will only be able to see the differential private weights of the single honest client, instead
of the plaintext weights. This is the type of leakage that prior works allowed. For large values of
the privacy loss parameter in differential privacy, epsilon, the accuracy is pretty high and hence the
probability of inferring the original value increases.

However, we introduce a new differentially-private mechanism that reduces this type of leakage.
We offer an additional layer of randomness by introducing distributed differentially privacy to the
weights of the local models. In prior works, each client picks his/her local noise. Contrarily, we offer
models which generate differentially private weights, where the differentially private noise for each
party is generated in a distributed manner from other parties. More specifically, each client receives
his/her noise from the other clients. We use encryption to ensure that clients do not know the partial
noise values received from neighbouring parties. Hence, every honest participant is assured a privacy
guarantee stronger than the existing differential privacy guarantee offered by existing implementations
even if clients collude. In the worst case, when n− 1 parties collude they still cannot figure out the
differentially private input of the other party as the honest party would have contributed to the noise
of the other n − 1 dishonest parties (and thus the colluding parties cannot subtract it). In the case
where each party generates its own differentailly private noise, the dishonest colluding parties can
try to replicate the Laplace distribution for the noise generated and subtract it from the differentially
private output set. Hence, having a better way to guess the original input of the honest party. This can
be prevented in our case. Therefore, making it harder for the colluding adversaries. In particular, in
our scheme, each client sends two encrypted noisy terms to the other clients but the clients choose
to add to their weights only 1 out of the 2 terms received. In this way, once parties collude they

3

P1(w1) P2(w2)

P3(w3)

A

(w̄1 + w̄2 + w̄3/3)

r12 = r21

r13 = r31 r32 = r23

w̄1
w̄3 w̄2

P1(w1) P2(w2)

P3(w3)

A

(W̄1 + W̄2 + W̄3)/3

η̄12

η̄21

η̄13
η̄31

η̄23
η̄32

W̄1 W̄3 W̄2

Figure 1: Secure 3-party weighted average protocol where w̄1 = w1 + r12 + r13, w̄2 = w2 − r21 +
r23, w̄3 = w3 − r31 − r32.

cannot subtract a significant number of noise terms because they will simply do not know which
noise term the honest clients chose. For example, in Figure 1 client P1 receives encrypted noise terms
η̄21 = (η̄0

21, η̄
1
21) and η̄31 = (η̄0

31, η̄
1
31) and it decides to add only 1-out-of-2 of them. For example,

client P1 will add to his encrypted weights x̄1, the noise term η̄1
2,1 and η̄0

3,1. The final weight sent to
the server is W 1 = w̄1 + η̄1

2,1 + η̄0
3,1.

Our new differentially-private mechanisms: We device two different mechanisms to generate
the distributed noise of each client.

Mechanism I: In this mechanism we make sure that each client’s weights are differentially private.
To achieve this mechanism, each client receives n− 1 encrypted noise contributions from the other
n− 1 clients drawn from the difference of two gamma distributions. Then, each client adds the n− 1
noise contributions to his/her weights. Note that the sum of the difference of gamma distributions is a
Laplace distribution. The Laplace distribution achieves differential privacy. That said, the weights
are converted to differentially private weights before they reach the server.

Mechanism II: In the second case, we offer a partial differentially private noise generation, whose
total sum is differentially private. Thus only the final result added by the server is differentially
private. To achieve this mechanism, each client receives an encrypted noise contributions from its
neighbouring client drawn from a gamma distribution. Then, each client computes the difference of
the received noise with a noise of his choice from the gamma distribution. Note that the difference
of gamma distributions does not offer differential privacy. That said, the noisy weight sent to the
server are not differentially private. We are the first to propose a distributed differentially private
noise utilization in a multi-party setting for federated learning to reduce leakage.

Note that in both mechanisms the client chooses 1-out-of-2 encrypted noise contributions received
from the other parties.

The second method has better utility than the first method since less noise is being added to the final
weighted average. On the other hand, the first approach may leak less information, if n− 1 parties
collude since the weights sent to the server are already differential private, as opposed to the second
mechanism in which they are not differential private.

Comparison of the two different mechanisms For the purposes of this introduction, we trained a
toy simple logistic classifier using Andrew Ng’s dataset [1] from his lecture on logistic regression in
coursera. The dataset consists of two exam results of microchips in a factory and using the test results
one will predict if the microchips are going to be rejected or admitted. The two axes in Fig. 2 depict
the exam results (Exam1 and Exam 2). The green boundary represents the non-private classifier, the
black boundary depicts the private classifier trained using the first mechanism, where each party adds
differerntially private noise to his weights, and the yellow boundary represents the private classifier
trained using the second mechanism.

4

Figure 2: Accuracy comparison of our differerntially private mechanisms with non private classifier

In the next section we provide the formal definitions required to formally define our protocol in
Section 4.

2.1 Differential Privacy

Definition 1. (ε-differential privacy) A randomized mechanism A: D → O preserves ε-differential
privacy (ε-DP) when there exists ε > 0 such that,

Pr [A(D1) ∈ T] ≤ eε Pr [A(D2) ∈ T]

holds for every subset T ⊆ O and for any two neighboring datasets D1 ∼ D2.

Definition 2. (Global Sensitivity) For a real-valued query function q : D → R, where D denotes the
set of all possible datasets, the global sensitivity of q, denoted by ∆, is defined as

∆ = max
D1∼D2

|q(D1)− q(D2)|,

for all D1 ∈ D and D2 ∈ D.

2.1.1 Laplacian Mechanism

One of the most well-known differentially private mechanism is the Laplacian mechanism, which
uses random noise X drawn from the symmetric Laplacian distribution. The zero-mean Laplacian
distribution has a symmetric probability density function f(x) with a scale parameter λ defined as:

f(x) =
1

2λ
e−

|x|
λ .

Given the global sensitivity, ∆, of the query function q, and the privacy parameter ε, the Laplacian
mechanism A uses random noise X drawn from the Laplacian distribution with scale λ = ∆

ε . The
Laplacian mechanism preserves ε-differential privacy.

2.2 Generating Laplace Random Variable from Gamma Random Variables

A Laplace random variable can be generated from the sum of n random variables as follows,

L(µ, λ) = µ
n +

∑n
k=1 γk − γ′k

γk and γ′k are Gamma distributed random variables with probability density functions defined as :

(1/s)1/n

Γ(1/n) x
1/n−1e−x/s,

where 1/n is the shape parameter, s is the scale parameter and Γ(k) =
∫∞

0
xk−1e−xdx

5

2.3 Training Local Logistic Regression Classifiers

Logistic regression is a machine learning algorithm used to solve the problem of binary linear
classification.

Let Parties P1, ..., Pn have datasets DS1, ..., DSn where DSi = (x(i), y(i)) contains a set of in-
stances x(i) = (x

(i)
1 , x

(i)
2 ,, x

(i)
m), where m is the number of features, and their corresponding

labels y(i), for i in 1 to n.

Every party Pi makes use of their dataset (x(i), y(i)) to learn an l2 regularized logistic classifier with
weights w′ij . The weights are obtained by solving the following optimization problem

w′ij = arg min
w

Cost(w) = arg min
w

1

ti

ti∑
k=1

log(1 + e−y
(i)
k f(x

(i)
k)) + αwTw, (1)

where f(x
(i)
k) = wTx

(i)
k , ti is the number of training examples of Pi and α > 0 is the regularization

parameter.

In order to minimize the cost function, we make use of gradient descent, an iterative optimization algo-
rithm. For a dataset DSi, the optimal w is calculated iteratively as wp+1 ← wp−β∇Cost(wp), p ≥
0, where β is the learning rate, w0 is assigned a random value, and∇Cost is the gradient.

2.4 Differentially Private Federated Logistic Regression using Output Perturbation

Privacy-preserving federated learning allows large number of parties to learn a model while keeping
their local training data private. Parties first train local models on their local data and coordinate with
a server to obtain a global model. Given n parties, let ŵi, for i ∈ 1 to n, represent the local model
estimator after minimizing the objective function.

Ŵ = 1
n

∑n
i=1 ŵi + η, η is the differentially private noise added to the cumulative model.

According to [10], for 1-Lipschitz the global sensitivity for a multi-party setting 2
n∗k∗α , where k

is the size of the smallest dataset amongst the k parties, α is the regularization parameter. Hence,
η = Laplace(2

n∗k∗α∗ε), where ε is the privacy loss parameter.

In our protocol, client will add noise to the weights of the trained model.

3 Experiments

In order to evaluate our method, we implement it in ABIDES, an agent-based interactive discrete
event simulation framework. [5] The ABIDES platform was originally deployed for financial market
simulation, but at its core provides a framework easily adapted to other domains. The system operates
in a single-threaded manner to permit deterministic re-simulation in the presence of stochastic
elements, but simulates the actions of tens of thousands of agents operating in parallel to one another.
The simulation Kernel tracks time in nanoseconds and enforces “simulation physics” including
configurable agent computation delays and pairwise communication latency among agents. All inter-
agent communication passes through the Kernel in the form of timestamped messages in a priority
queue. The nature of discrete event simulation permits efficient computation of sparse activity patterns
at high time resolution. The ABIDES source code is freely available under a BSD-style license at
https://github.com/abides-sim/abides. Using ABIDES we can simulate the latency across
the different devices. Many prior works, including [4], on federated learning calculate the running
time of their protocol ignoring the latency.

In Tables 1 and 2 we provide some preliminary results on the performance of our system. We used the
CIFAR-10 dataset [11] to evaluate our experiments. Each party selects 6000 rows from the dataset,
sets the learning rate to 0.5, sets the regularization parameter to 0.001, and number of iterations to
train the model per round to 1000. The non private version gave us an accuracy of 89.1%. We compare
the accuracy in Table 1 for different values of the privacy loss parameter, epsilon, and number of
parties collaborating in the system. We clearly see that accuracy is proportional to number of parties
and epsilon. AccuracyI corresponds to mechanism I and AccuracyII corresponds to mechanism II in
which only the final output from the server is differentially private.

6

Table 1: Accuracy comparison of mechanisms I and II on the CIFAR-10 dataset

Epsilon Number of Parties AccuracyII AccuracyI

0.01 150 58.1 36.57
0.1 50 63.65 40.05
0.1 100 89.05 47.45
0.1 150 89.09 54.8
0.1 100 89.09 60.0

Table 2: Running time Comparison

Number of Parties Time taken for NYC Time taken for Globe (sec)

50 34 211
100 35 217
150 46 226

Our evaluation computes the total time taken to receive updated mean weights from the server for 3
iterations. For communication within New York City clients, we simulated latencies by generating
random numbers using the uniform distribution with a lower bound of 0.001 seconds and an upper
bound of 0.003 seconds. For communication anywhere across the globe, we simulated latencies
by generating random numbers using the uniform distribution with a lower bound of 0.01 seconds
and an upper bound of 2 seconds. The comparison can be seen in Table 2. The experiments were
implemented in a MacBook with 8GB of 1600MHz on board memory and an intel i5 core processor.

4 Secure Weighted Average Protocol

In this section we formally describe our weighted average protocol ΠPPFL, depicted in Protocol 1, for
secure logistic regression performed by a set of clients (P1, . . . , Pn) and a server S.

In the setup phase, every pair of parties Pi and Pj will share some common randomness ri,j = rj,i
which is secret and known only to these two parties. In the online weighted average phase, client
Pi sends its weights masked with these common random strings, while adding all ri,j for j > i and
subtracting all ri,k for k < i.

In order to establish common randomness between each pair of parties, the two parties just run
Diffie-Hellman Key agreement protocol [7]. Before proceeding with a formal description of the
protocol, we first enumerate the cryptographic primitives we use:

• We assume the existence of an algorithm G(1λ), where λ is the security parameter, that
outputs a representation of a cyclic group G of order q (with ||q|| = λ) for which the discrete
logarithm problem is believed to be hard. Recall that a group G is cyclic if there exists a
generator g such that {g0, g1, . . . , gq−1} = G. Moreover, the discrete logarithm problem is
believed to be hard if for every probabilistic polynomial time adversary A, there exists a
negligible function negl(·) such that:

Pr
x←Zq

[A(G, g, q, gx) = x] = negl(λ)

• A key derivation function H : G→ {0, 1}λ. It is assumed that if h is distributed uniformly
in G, then H(h) is distributed uniformly in {0, 1}λ.

• A pseudorandom generator with double expansion, i.e., G : {0, 1}λ → {0, 1}2λ. It is
assumed that for every distinguisher D there exists a negligible function negl(·) such that:∣∣∣∣ Pr

s←{0,1}λ
[D(G(s)) = 1]− Pr

r←{0,1}2λ
[D(r) = 1]

∣∣∣∣ = negl(λ) .

We are now ready to provide the detailed description of the weighted average protocol:

7

Protocol 1 Privacy-Preserving Federated Logistic Regression Protocol ΠPPFL for a single iteration

The protocol ΠPPFL runs with parties P1, . . . , Pn and a server S. It proceeds as follows:
Inputs: For i ∈ [n], party Pi holds input dataset Di.
Public Parameters: (G, g, q) generated by G(1λ) and modulo p.
ΠPPFL.Setup(1λ):

Round 1: Each party Pi for i ∈ [n] proceeds as follows:
• Choose n secrets ai,1, . . . , ai,n uniformly and independently at random from Zq and

computes (pki,1, . . . , pki,n) = (gai,1 mod p, . . . , gai,n mod p).
• Generate gamma random variables γbi,j(1/n, scale) and γ̄bi,j(1/n, scale), for b ∈
{0, 1} with scale = 2/(n ∗ len(DSi) ∗ α ∗ ε).

• For all j ∈ [n]:
(a) Generate random masks si,j ∈ Zq .
(b) Compute noise η0

i,j = si,j + γ0
i,j − γ̄0

i,j .
(c) Compute noise η1

i,j = si,j + γ1
i,j − γ̄1

i,j .

• Each party Pi sends pki,j and η0
i,j , η

1
i,j to party Pj .

Round 2: Each party Pj for j ∈ [n] proceeds as follows:
• Upon receiving all values (pk1,j , . . . , pkn,j), compute the shared common keys ri,j

for all i ∈ [n] as follows:
(a) Using the secret aj,i compute ci,j = cj,i = (pki,j)

aj,i = (gai,j)
aj,i mod p.

(b) Let c1,j , . . . , cn,j be the set of all common keys. Use a key-derivation function and
set ri,j = rj,i = H(ci,j)

Given the above setup, we can compute the federated logistic regression model as follows:
ΠPPFL.WeightedAverage(Di, {ri,j}j∈[n]):

Round 1: Each party Pi proceeds as follows:
• Compute the weights Wi, using Equation (1), of the local logistic classifier obtained by

implementing regularized logistic regression on input Di.
The next steps are repeated per weight. Without loss of generality we describe the
algorithm for a single weight, denoted by wi.

• Generate a random bit vector b = (b1, . . . , bn) and compute

yi := wi +

n∑
j=i+1

ri,j +

i−1∑
k=1

rk,i +

n∑
j=1

ηbii,j mod p .

• Send yi to the server.
Round 2: The server computes W =

(∑n
i=1 yi mod p

)
/n and sends W to all parties.

ΠPPFL.Output(1λ,W): Each party Pi upon receiving W runs the next iteration of the logistic
regression repeating ΠPPFL.WeightedAverage(1λ).

The above protocol is described for a single iteration of the logistic regression. To perform the next
iteration the algorithm ΠPPFL.Setup is not repeated. Instead, the parties can use the common keys
ri,j to generate different common keys for the next iteration. More specifically, in the first iteration of
the logistic regression we use a pseudorandom generator (r′i,j , s) = G(ri,j) and update the common
randomness ri,j := r′i,j . For the next iterations, run G(s) to obtain the new r′i,j and the seed for
the next iteration and so on. That said, the parties need to communicate with each other only at
the beginning of the training. Moreover, given an upper bound on the number of iterations all the
noise terms η can be exchanged in the ΠPPFL.Setup. Furthermore, logistic regression is performed
over real numbers, in our implementation we use fix point arithmetic representation to perform the
operation modulo p.

8

References
[1] Logistic Regression Dataset, howpublished = https://github.com/ankitraj7217/

andrew-ng-week-3-logistic-regression/blob/master/ex2data2.txt, note = Accessed:
2019-09-16.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10, 1988.

[3] Vincent Bindschaedler, Shantanu Rane, Alejandro E Brito, Vanishree Rao, and Ersin Uzun. Achieving
differential privacy in secure multiparty data aggregation protocols on star networks. In Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy, pages 115–125. ACM, 2017.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1175–1191. ACM, 2017.

[5] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. ABIDES: towards high-fidelity market
simulation for AI research. CoRR, abs/1904.12066, 2019.

[6] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (abstract).
In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, page 462, 1987.

[7] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Information Theory,
22(6):644–654, 1976.

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 486–503. Springer, 2006.

[9] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, New York, New York, USA, pages 218–229, 1987.

[10] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed learning without distress:
Privacy-preserving empirical risk minimization. In Advances in Neural Information Processing Systems,
pages 6343–6354, 2018.

[11] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55, 2014.

[12] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, volume 7, pages
94–103, 2007.

[13] Elaine Shi, T-H Hubert Chan, Eleanor Rieffel, and Dawn Song. Distributed private data analysis: Lower
bounds and practical constructions. ACM Transactions on Algorithms (TALG), 13(4):50, 2017.

[14] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 162–167,
1986.

9

https://github.com/ankitraj7217/andrew-ng-week-3-logistic-regression/blob/master/ex2data2.txt
https://github.com/ankitraj7217/andrew-ng-week-3-logistic-regression/blob/master/ex2data2.txt

	Introduction
	Our Approach
	Differential Privacy
	Laplacian Mechanism

	Generating Laplace Random Variable from Gamma Random Variables
	Training Local Logistic Regression Classifiers
	Differentially Private Federated Logistic Regression using Output Perturbation

	Experiments
	Secure Weighted Average Protocol

