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Abstract

Financial services generate a huge volume of data that is extremely complex and
varied. These datasets are often stored in silos within organisations for various
reasons, including but not limited to, regulatory requirements and business needs.
As a result, data sharing within different lines of business as well as outside of the
organisation (e.g. to the research community) is severely limited. It is therefore
critical to investigate methods for synthesising financial datasets that follow the
same properties of the real data while respecting the need for privacy of the parties
involved in a particular dataset.

This introductory paper aims to highlight the growing need for effective synthetic
data generation in the financial domain. We highlight three main areas of focus for
the academic community: 1) Generating realistic synthetic datasets. 2) Measuring
the similarities between real and generated datasets 3) Ensuring the generative
process satisfies any privacy constraints.

Although these challenges are also present in other domains, the extra regulatory
and privacy requirements add another dimension of complexity and offer a unique
opportunity to study the topic in financial services. Finally, we aim to develop a
shared vocabulary and context for generating synthetic financial data using two
types of financial datasets as examples.

1 Introduction

Financial data contains some of the most sensitive and personally identifiable attributes of customers.
Using and sharing such data, especially for research purposes outside of the organisations that generate
it, is severely restricted. One approach to address this limitation is the generation of synthetic data.
The primary directive in generating synthetic financial data is therefore protecting the privacy of
customers and entities involved in generating a particular synthetic data set. This directive has been
enshrined into law in various jurisdictions, notably the GDPR laws in the European Union [1]], and
in the United States FERPA [2]] and HIPAA [3], relating to educational and medical data privacy,
respectively. The issue of data privacy is of great importance in public opinion, as evidenced by
reactions to the Facebook/Cambridge Analytica scandal [4]] and the numerous data breaches [5]
that have occurred over the last few decades, alongside the financial markets’ response to these
breaches [6].

We define synthetic data as data obtained from a generative process that learns the properties of the real
data. Such processes are strictly different from the most commonly used data obfuscation techniques
(e.g. anonymisation or removing certain sensitive attributes) as our intention is to synthesise new
samples that are related to but can not be mapped back to the real data. Some of the requirements for
such generative processes include:
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o Capability for generating many different data types, such as numeric, binary and categorical.

e The process should be able to generate an arbitrary number of data points, with as many
features as desired to good fidelity.

e The privacy characteristics of the dataset can be precisely tuned against how realistic the
data is.

We shall concentrate primarily on considerations of privacy over security, that is, we are in a setting
where we wish to share a dataset without compromising information about any given entity within
the dataset. An attacker is assumed to have full access to the synthetic dataset, as well as to the
generating algorithm, but not the original dataset.

1.1 Motivation

Some the basic use cases and motivations for synthetic data generation in finance are highlighted
below.

Internal data use restrictions. Regulatory requirements may prevent data sharing between different
lines of business within a company. Alternatively, teams may wish to begin working with
data before the relevant approvals have been made.

Lack of historical data. There is a limited amount of historical data to study certain events (e.g.
flash crashes in the market, recessions, new regimes of behaviour) that make studying
the underlying mechanisms very challenging. It is useful in various such settings to have
counterfactual data for testing strategies and inferences.

Tackling class imbalance. For use cases such as fraud detection, the datasets are usually highly
imbalanced, and traditional machine learning and anomaly detection techniques often fail.
Realistic synthetic data, along with appropriate data imputation techniques offer a promising
approach to tackle this challenge.

Training advanced Machine Learning models. Large scale advanced machine learning (e.g. deep
learning) is often carried out using cloud services, requiring compute resources and vast
quantities of training data. Institutions may not be able to upload training data to these
services for a number of reasons. Synthetic data can be used to train models, which can then
be brought back on premise to be used on real data. Moreover, training on synthesised data
offers some protection from “membership inference attacks”, wherein model parameters
can be used to extract training data.

Data sharing. By sharing data between institutions and within the research community, better
solutions can be found for technical problems faced by financial institutions. Sharing of
synthetic data allows financial institutions to do this in a way that satisfies their data sharing
restrictions.

2 Examples of financial data

For the purposes of this paper, we consider two broad classes of financial data, retail banking and
market microstructure data. Retail financial data arises from operations facing the general public.
This includes, but is not limited, to transaction data, loan applications, customer service logs, etc.
Market microstructure data refers to the data maintained and distributed by exchanges detailing
historical limit order book orders and snapshots for a given financial asset. Generating synthetic data
in each domain presents its own challenges, which we go through in turn.

2.1 Retail Banking Data

A famous example of a retail-type dataset is the UCI Adult dataset [7], where the binary feature
of whether a particular person has an income of over $50k/year is predicted by various census
information, such as age, profession, marital status and gender. This data set is tabular, mimicking
how data is typically stored in a relational database. Most examples of synthesised data sets are also
tabular.



There have been a number of technical approaches suggested for protecting privacy in tabular data.
The two main approaches are k-anonymity [8] and differential privacy [9]]. A dataset is said to
have the k-anonymity property if the information for each entity contained in the dataset cannot be
distinguished from k& — 1 entities also appearing in the release. Differential privacy is a technical
condition satisfied by a randomised algorithm ensuring that the distribution of the output of the
algorithm is bounded when applied to two “adjacent” datasets, with the definition of adjacent being
dependent on the application. In the most typical case, tabular datasets are adjacent when they differ
by a single row. Typically, a differentially private algorithm is parameterized by the pair (¢, §), where
smaller values of € denote greater privacy and § denotes a failure probability. Differential privacy
enjoys the property of composability, whereby differentially private algorithms can be chained with
their output remaining differentially private. Moreover, differentially private algorithms are provably
safe against attackers with side information [9]]. The k-anonymity paradigm suffers from the curse of
dimensionality [10], in that one has to destroy a rapidly increasing fraction of a particular dataset as
the number of columns in the table grows to ensure k-anonymity. As such, differential privacy is the
most popular technical solution for releasing data privately. Data synthesis methods using differential
privacy for tabular data are well covered in the review by Bowen and Liu [11]].

One must also be cognizant of data deanonymization: whence an anonymized dataset is combined
with existing data to personally identify individuals in the dataset. This has been demonstrated by
Daries et al. [12]] where data from massive open online courses (MOOCs) was deanonymized and
by Archie et al. [13], who deanonymized the Netflix prize dataset using Amazon review data. Indeed,
the US Census is recognised as having been vulnerable to such attacks in previous iterations [14].

2.2 Market Microstructure Data

Markets data typically come in the form of time series describing, for example, a stock price over
time. The granularity of the data is dependent on the frequency of the trading activity by the market
participants. In the past decade, the rise of algorithmic trading, and specifically, high frequency
trading has resulted in a significant increase in the amount of data available for research. However,
access to such data sets is very limited and therefore an effort to synthesize such data sets using real
data is needed.

Of particular interest to the research community is limit order book data. A limit order book is used
by exchanges to match buyers and sellers of a particular security [[15]. It is an electronic record of the
outstanding orders in the market and represents a snapshot in time describing the supply and demand
of the security. It is based on the continuous double auction mechanism whereby participants can
submit both buy and sell orders and expect their trades to match instantaneously if a corresponding
trade on the opposing side is present. Exchanges offer various order types. The two main types are
market and limit orders. A market order is an instruction to buy/sell a specific amount of an asset
without specifying the price. In contrast, a limit order specifies the price that should not be exceeded
in the case of a buy order or gone below in case of a sell order.

The main technical challenge in synthesising such order book data is that of representing aggregate
decisions of many independent actors with differing risk tolerance, rationality and motives. In
addition, generating realistic datasets requires defining an appropriate distance between datasets, then
accurately measuring how close the two datasets are. The empirical properties of limit order book
data have been studied extensively in the literature and are often referred to as stylized facts of the
real limit order book data. It is important to make sure that the empirical properties of the synthetic
data follows, as close as possible, those of real order book data. For example, it is empirically shown
that lower spreads (the difference between the best bid and ask prices) are observed during period
of high trading volumes and that trading volumes are typically highest at the beginning and end of
the trading day. These are two examples, of many, which would need to be taken into consideration
when synthesizing synthetic data in the market microstructure domain [16].

3 Techniques for synthetic data generation

We shall focus mainly on synthetic data generation with privacy guarantees. The following sections
highlight a selected list of techniques used for financial data generation.



3.1 Tabular Data

A number of techniques have been proposed for tabular data generation. For a comprehensive survey
of these methods see the survey by Surendra and Mohan [[17]].

In the Data Mining literature Eno and Thompson [18]] define an XML-based synthetic data definition
language (SDDL) from which synthetic data may be generated. The algorithm generating the SDDL
effectively “inverts” a decision-tree classifier. This method carries no guarantees on privacy. In
a similar fashion, there are methods based on other classical machine learning classifiers, such as
support vector machines [19]] and Random Forests [20]. The drawback with these methods is that the
better the classifier, the higher the risk of leaking data, with no tunable privacy parameter.

Abowd and Vilhuber [21] provide a Bayesian inspired differentially private synthetic data release of
multidimensional tabular data. Zhang et al. [22] present a synthetic data generator based on Bayesian
networks that is also differentially private. This method is effective, with tunable privacy parameters
but suffers from the drawback of growing substantially with each new feature added. The method
devised by Li et al. [23]] generates data according to the histogram of each feature, linking the features
via a copula. This method enjoys privacy guarantees but scales poorly with a growing number of
features. The Gibbs sampling based method by Park and Ghosh [24] gives strong privacy guarantees
and scales well. This technique is however limited to categorical variables.

These techniques for generating synthetic tabular data with privacy protection all suffer to a varying
degree from the following limitations. Most differential privacy frameworks represent a row of a
given table as a bit string with length equal to the domain size, which grows exponentially in the
number of columns of the table. This representation quickly becomes impractical to use. The second
limitation of this representation is that most high-dimensional datasets are very sparse, resulting in
the noise being added to generate the privacy completely washing out the real data, rendering the
released dataset unsuitable as an approximation to the true dataset. A more thorough discussion of
these limitations can be found in Zhang [25]].

Agent-based modelling (ABM) has been used in the context of synthesizing payments data, for
instance in modelling a bank’s payment processing system [26] and investigating the macroscopic
impact of a disruptive event on the flow of interbank payments [27]. Synthetic data for a retail
shoe store has been created using ABM by Lopez-Rojas and Axelsson [28]]. This generated data
intrinsically respects privacy constraints if calibration is manually carried out. If an automated
quantitative method is used there is a risk of data leakage. Calibration methods in the ABM literature
currently do not explicitly preserve privacy, a survey on ABM calibration methods can be found
in [29].

3.2 Synthetic financial time series

There has been a lot of work in generating synthetic financial time series data and in releasing differ-
entially private data streams, but little in the way of synthetic financial time series data with privacy
guarantees. The classical approach is to propose a simple statistical model such as autoregressive
or GARCH (Generalized Autoregressive Conditional Heteroscedasticity) models for financial time
series, and then fit real-world data to this model using maximum-likelihood. These methods carry
the advantage of being easy to fit and interpret, but rely on strong assumptions and are unable to
reproduce many of the statistical features of many financial time series [30]. Examples of more
modern approaches using neural architectures are QuantGAN [31]] and the work by Fu et al. [32] for
modelling log returns of stocks and associated classical time series models. These methods provide
no privacy guarantees and have yet to be conclusively shown not to be explicitly memorising data.
Agent-based models are often used to replicate the dynamics of financial markets and then used to
derive financial time series approximating those seen live. This topic lies outside the scope of this
paper, see [33], [34] , [15, Section 5C] and references therein for more on agent based models in
finance.

3.3 Stream data with privacy guarantees

Publishing stream data with privacy guarantees was first addressed by Dwork [35] and Dwork et al.
[36]. In this approach, stream data is viewed as a bit string with a continuous counter of the number
of ones observed being reported. This model is called event-level privacy as individual events in



the stream are protected. One can also protect user-level privacy, where the presence of a particular
user in a dataset is masked from an adversary. This is not necessarily the most natural model of
privacy for time series data. A privacy model called w-event privacy, protecting events occurring
within any window of w timestamps, was proposed by Kellaris et al. [37] with associated data release
algorithms. The model used here is one in which an organisation wishes to publish continuous
counts of a finite number of different events occurring. There is also the notion of d-privacy, where
d is a metric defined on datasets that generalises adjacency of databases for differential privacy,
defined by Chatzikokolakis et al. [38]]. This model allows for preserving the privacy of continuous
quantities. These two models were combined by Fioretto and Van Hentenryck [39] into the notion of
(w, «)-indistinguishability, protecting blocks of continuously-valued data, which is more relevant to
financial data. The authors present their OPTSTREAM algorithm for releasing time series data under
this model of privacy. Limitations of these methods have not yet been settled upon by the research
community, but representation of this data is likely to lead to same scaling issues as in tabular data
as the number of streams being simultaneously released increases. There is a yet no established
approach in synthesising financial time series data, in particular market microstructure data.

3.4 Unstructured Data

Neural network based methods such as those presented by Shokri and Shmatikov [40]], Acs et al.
[41] and [42] extend differentially private synthetic data generation to the domain of unstructured
data such as images and audio. Although highly promising, these methods are currently in their
infancy and suffer from the usual problems neural networks face [43}44]. Moreover, these methods
protect data on an individual level, that is, the presence of a singular data point (z,y) within the
training set is protected. This notion of privacy is insufficient in the case of, say, a image generator
for faces, with the training set containing the same face at different angles. In this example one would
need to protect against an attacker ascertaining the presence of this entire group of images in the
training set.

Controlling the the trade off between noise and privacy [9] in an optimal way for synthetic data
remains an open problem.

4 Evaluating generative models

As argued by Donoho [45]], a large part of the success of machine learning as a field comes from the
common task framework, namely having a set of benchmark datasets and a real-valued metric that was
used to compare model quality. With this in mind, there has been a large body of work attempting to
evaluate generative models using a single real-valued metric, as well as a standardisation of datasets
being used.

In particular, we briefly focus on the success in the computer vision community with regard to
generated image data. While of a very different nature to data that is of financial origin, image
data shares many salient properties. Both types of data can often be qualitatively evaluated well by
humans to some degree, and come from high-dimensional multi-model distributions. Indeed, these
properties are what lead classical methods such as density estimation to be poorly performing at
generating convincing synthetic data. In the paper by Theis et al. [46], the authors argue against
using classical methods such as log-likelihood and Parzen window estimates as an evaluation metric
for generative models of high-dimensional image data. They provide explicit examples of where
these metrics fail, for instance when using nearest neighbour evaluation in the dataset of generated
images, whereby perceptually small changes can lead to large changes in Euclidean distance and vice
versa. For datasets with a large number of images, small changes can make the nearest neighbour
qualitatively different. There is theoretical justification for this being the rule rather than the exception,
see for instance [47]. Metrics such as the Inception Score [48]], Fréchet Inception Distance [49]
and precision/recall [S0] have been devised to combat these problems, but suffer from their own
disadvantages. This type of analysis and creation of metrics is what is currently missing in the
literature for generating financial data, time series in particular.

Evaluating generative models for tabular data is still a nascent discipline with, to our knowledge, no
widely established benchmarks, datasets or metrics. At the time of writing, the most common method
is to adapt classical statistical methods such as the Kolmogorov-Smirnov test [S1,152], although more



recently some effort has gone towards developing specialised metrics [53]]. However, none of these
methods provide a single real-valued metric for evaluating such models.

A number of different techniques are used in evaluating generative models for time series-type
data. For example, Wiese et al. [31] and Li et al. [54] estimate statistical distances between the
test data and generated data. Indeed, in light of the discussion by Theis et al. [46] one can not rely
on these measures as a metric for realism. Alternatively, the evaluation of certain quantities such
as Value-at-Risk (VaR) [55]] is “backtested”, whereby historical data for a time period is used to
train a generative model, at which point the true VaR observed in the subsequent historical period
is compared with that obtained by the generative model [32]. This method suffers from a dearth of
data since there is only one history. There are alternatively, certain “stylized facts” that are widely
observed in market microstructure data, that are often evaluated qualitatively [S6,57]]. The stylized
facts thus far have yet to be converted into a single real-valued metric in a convincing way.

S Towards a compact representation of real data

Given the preceding discussion, it is worthwhile to consider a framework for how synthetic data
can best be represented and transferred between different parties. Moreover, we can examine how
existing techniques fit into this framework. The following properties of such a representation are
desirable:

Privacy preserving. It is important to define the groups, entities and events whose privacy is to be
protected, with tunable parameters for the trade-off between privacy and realism.

Human readable. It is desirable that the format in which synthetic data, or a generative model
describing the synthetic data be readily interpretable without undue difficulty. In finance this
is especially relevant as regulators, internal colleagues and other parties must have confidence
in the representation and its privacy properties. An overly technical representation is less
likely to be relevant and foster trust.

Compact. The representation of synthetic data should be such that it is significantly smaller than the
real data it is derived from, and should be reconstructible on the receiver’s end, ideally with
open source software. The synthetic data should also require little technical know-how to
generate, so that staff with direct access can synthesise the data on-premise.

With regard to the first point in the framework above, (e, §)-differential privacy provides a good
model for tabular data, as seen in Section 3.1} For stream data and more structured data there is
still not a consensus in the literature as to the best way for privacy to be defined. Indeed, even for
tabular data differential privacy is not the last word, with future directions suggested by Kifer and
Machanavajjhala [58].

On the second point, Eno and Thompson [[18]] define a synthetic data language for tabular data, which
is is a promising direction although lacking any privacy guarantees. The synthetic data vault [S9] is
a more contemporary approach, with a synthetic database specified via JSON. Some aspects of the
correlations between variables are captured, although a solution more tailored to financial data driven
from more exotic distributions is required.

The most common ways of sharing synthetic data are either providing the generated dataset itself,
or sharing learned parameters for the generative process. These two approaches have contrasting
readability and compactness properties that need to be balanced on a case by case basis.

6 Conclusions

In this paper we have highlighted the unique challenges faced in generating financial data, and we
have summarised the state of related literature at the time of writing. We describe the types of
financial data that need to be protected by institutions, namely tabular data in retail banking and time
series of market microstructure data. The state of the art in privacy-preserving generation and release
of tabular data is more advanced than the equivalent task in stream data, perhaps due to the increased
complexity of the latter.



Despite the various pitfalls described in our paper, we strongly believe in the importance and utility
of researching methods to synthesize financial data as it will aid in building models to tackle issues
of fairness and trustworthiness in financial market operations.

Disclaimer

This paper was prepared for information purposes by the Al Research Group of JPMorgan Chase &
Co and its affiliates (J.P. Morgan), and is not a product of the Research Department of J.P. Morgan.
J.P. Morgan makes no explicit or implied representation and warranty and accepts no liability, for
the completeness, accuracy or reliability of information, or the legal, compliance, financial, tax or
accounting effects of matters contained herein. This document is not intended as investment research
or investment advice, or a recommendation, offer or solicitation for the purchase or sale of any
security, financial instrument, financial product or service, or to be used in any way for evaluating the
merits of participating in any transaction.
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