
On the Importance of Opponent Modeling
in Auction Markets

Mahmoud Mahfouz*1,2, Angelos Filos*1,3, Cyrine Chtourou1, Joshua Lockhart1
Samuel Assefa1, Manuela Veloso1, Danilo Mandic2, Tucker Balch1

1 JPMorgan Chase & Co., 2 Imperial College London, 3 University of Oxford
mahmoud.a.mahfouz@jpmchase.com ∗

Abstract

The dynamics of financial markets are driven by the interactions between partici-
pants, as well as the trading mechanisms and regulatory frameworks that govern
these interactions. Decision makers would rather not ignore the impact of other par-
ticipants on these dynamics, and should employ tools and models that take this into
account. To this end, we demonstrate the efficacy of applying opponent-modeling
in a number of simulated market settings. While our simulations are simplified
representations of actual market dynamics, they provide an idealized “playground”
in which our techniques can be demonstrated and tested. We present this work with
the aim that our techniques could be refined and, with some effort, scaled up to the
full complexity of real-world market scenarios. We hope that the results presented
encourage practitioners to adopt opponent-modeling methods and apply them on
live systems, in order to enable not only reactive but also proactive decisions to be
made.

1 Introduction

The study of multi-agent systems (MAS) plays an important role in different scientific disciplines,
including, but not limited to biology [19], evolutionary psychology [14], economics [16], and political
science [27]. MAS has also been studied in computational finance to develop trading agents [35] and
their associated decision making strategies, taking into account the interactions with the other market
participants. In MAS, the agents attempt to maximize a utility function which is typically dependent
on the behavior and actions of the other agents in the environment. This suggests the need for agent
strategies to be reactive and adaptive to the other agents in the environment.

Game theory [29, 38] provides a mathematical formalism for describing the complex behaviors
that emerge from the different agent interactions and suggests tools to develop successful strategies.
Nonetheless, strong assumptions are traditionally made about having access to reliable models
describing the system dynamics, which is invalid even in the simplest of setups. For example, in
financial markets designing a strategy that takes into account the impact of its decisions, is as difficult
as solving the original problem itself, and heuristic approaches [18] are not adaptive hence their
quality degrades as the dynamics drift over time.

In contrast, learning from data [29] is an attractive framework under which assumptions can be
relaxed and flexible models can be developed and calibrated to real-world data. In particular, recent
advances in machine learning [17, 26] allow for black-box, task-agnostic, large-scale modeling.
However, in all these settings, the presence of multiple learning agents renders the training problem
non-stationary and often leads to unstable dynamics or undesirable final results [4, 15].
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Opponent modeling [11] addresses this problem, attempting to decouple the sources of non-
stationarity by modeling separately the other learning agents from the stationary components of the
environment.

In this paper we explore the applications of opponent modeling techniques in single and continuous
double auction markets [35], as a proxy for real financial markets. We also discuss potential research
topics that address key challenges and opportunities of interest to the financial community.

2 Background and Related Work

Opponent modeling refers to a set of methods to construct models of the other agents in the same
environment with the goal of predicting various properties of interest such as the agents’ actions,
types, beliefs and goals [1]. Different approaches are studied in the literature including policy
reconstruction [8, 33], type-based reasoning [5, 2], classification [34], plan recognition [10], recursive
reasoning [12], graphical models [22] and group modeling [30].

The financial markets can be thought of as a multi-agent system composed of multiple agents whose
different utility functions (e.g. maximizing profit or reducing risk exposure) are highly dependent on
the behavior and actions of the other market participants. For instance, Yang et al. [39, 40] implicitly
perform opponent modeling in a continuous double auction setup by using Inverse Reinforcement
Learning (IRL) to characterize the different trading strategies in a limit order book. In their approach,
they model the trades placed in the order book as a Markov Decision Process (MDP) and cluster the
reward space to differentiate between high frequency, opportunistic and market making strategies.

3 Opponent Modeling in Auction Markets

We formulate decision-making in a multi-agent system as that of finding an optimal policy in a
Markov game (MG) [25]. An MG for N agents is defined by a set of states S, N sets of actions
A1, . . . ,AN for each agent. The next state is produced according to the state transition function
T : S ×A1 × · · · × AN 7→ S, and at each state, agent i receives reward ri : S 7→ R. Each agent i
aims to maximize its own total expected return Ri =

∑T
t=0 γ

trti where γ is a discount factor and T
is the time horizon. Note that the transition function depends on all agents’ actions, hence each agent
has an incentive to model and adapt to the other agents actions too, since they contribute to its own
expected return. We distinguish between two types of policies for solving an MG:

(1) implicit-modeling: the agents implicitly take into account the impact of the other agents via the
global state, learning a policy π(IM)

i : S ×Ai 7→ [0, 1];

(2) opponent-modeling: each agent explicitly models the policies of other agents, learning a model
π̂−i and choose actions according to π(OM)

i : S ×Ai × π̂−i 7→ [0, 1], where the subscript −i refers to
all agents but i.

Note that the implicit-modeling approach is treating the MG as a single-agent Markov decision
process (MDP) [6], but there are no guarantees for the existence of a stationary optimal policy since
the transition dynamics depend on uncontrollable variables (i.e., all agents but i).

An attractive framework for learning policies for sequential decision-making from data and without
access to reliable models is model-free reinforcement learning [31] which is also suitable for solving
MGs. For agent i, we assume parametric policy πθi , which we train using the simple REINFORCE
algorithm [37, 32], directly adjusting the parameters θi in order to maximize the objective J(θi) =
Es∼pπ,a∼πθi

[Ri] by taking steps in the direction of∇θiJ(θi).

In this section we present two examples of auction games, reformulated as MGs and demonstrate the
superiority of opponent modeling over opponent-agnostic approaches. Despite the simplicity and
abstraction of these examples, links and relevance are drawn with real financial market applications
in Section 4. We build on the analysis discussed in [35] for auctions and present two representative
examples:
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3.1 First-Price Sealed Bid Iterated Auctions

Figure 1: Percentage of auc-
tions won per agent type, where
the opponent-modeling (OM)
agent dominates both the implicit-
modeling (IM) and random poli-
cies.

In a first-price sealed bid eponymous iterated auction [35] (also
known as a blind auction), all bidding agents simultaneously
submit private bids (that is, no bidding agent knows of the other
agent’s bids) which are revealed at the end of each round. The
highest bidder wins, and pays the price they submitted. This
process is repeated T times.

Explicitly, consider N agents, each with a fixed and private eval-
uation vi ∈ [0, 1]. The i-th agent’s policy πθi returns a bid
bi ∈ [0, 1] and the reward received is vi−bi if the agent i won the
auction (i.e., submitted the highest bid) or 0 otherwise. A rational
agent does not submit bids larger than its evaluation and tries to
maximize the margin vi− bi subject to winning the auction. Note
that the game is stateless.

We assume thatN−2 agents sample from a latent truncated Gaus-
sian distributions with different means {µi}N−2

i=1 and variances
{σ2

i }
N−2
i=1 , maximum value at {vi}N−2

i=1 and minimum value of 0.

The remaining two agents are adaptive and trained using the RE-
INFORCE algorithm [37, 32]. The first agent (IM) with policy
πθIM , performs implicit modeling. We chose a truncated Gaussian
distribution for our model, hence θIM = {µIM, σ

2
IM} with maxi-

mum and minimum values vIM and 0, respectively. The second
adaptive agent performs opponent modeling and learns a model of the other agents using maximum
likelihood estimation for π̂−OM which is used to find the best response πθOM .

Figure 1 summarizes the results from a simulation with N = 10, T = 50 and vIM = vOM > vi, for
all i ∈ {1, . . . , N − 2}. In this experiment, the agent performing opponent modeling wins 58.2% of
the auctions demonstrating the value of our approach. The agent performing implicit modeling and
the N − 2 random agents win 34.5% and 7.3%, respectively.

3.2 Continuous Double Auctions

Previously, we assumed that direct opponent modeling was possible, since the actions of each agent
were announced after an auction, hence explicit models π̂−i could be built on the historic actions.
In many cases this information is not available even a posteriori, such as in limit order books of
exchanges.

A limit order book (LOB) is used by exchanges to match buyers and sellers of a given security
according to price-time priority rules [7]. The LOB represents a snapshot of the supply and demand
for a given security at a given time. While exchanges maintain historical records of the orders
submitted to the limit order book, the identity and the type of the trading participants is not typically
revealed. This makes the problem very difficult to approach in a supervised manner using only
observations of the order book and the orders placed in the market.

We create labeled synthetic data using an agent-based limit order book simulator (ABIDES) [9] and
formulate our approach to opponent modeling in a limit order book as a supervised learning problem
of identifying (classifying) agent archetypes explicitly programmed in the simulator, a task which can
be cast in the auxiliary tasks framework [23, 21] for semi-supervised reinforcement learning. Using
a classification approach for opponent modeling [34] allows for predicting properties of the other
agents as opposed to predicting the future actions of the agents, which can be useful in a range of
market scenarios discussed in our work.

The trading archetypes considered for generating our synthetic data are: (1) market makers (MM),
(2) liquidity consumers (LC), (3) mean reversion traders (ME) and (4) momentum traders (MO). For
details about the trading agents implemented, please refer to the appendix.

Synthetic Data: The synthetic market is created in an open source agent-based limit order book
simulator, ABIDES [9]. The simulation is run for a trading day between 09:30 AM and 4:00 PM
using the specified pool of agents acting against a market replay agent submitting the historical orders
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(a) Confusion matrix of a two layer neural network
classifier for trading agent types: market maker
(MM), liquidity consumer (LC), mean reversion
trader (ME) and momentum trader (MO).

(b) Principal Component Analysis on the feature
maps of the penultimate layer of the neural network
showing the class separation between the different
agent archetypes.

Figure 2: Trading agent archetype classification in a limit order book: model results

for IBM on the 28th of June 2019. The market created consisted of 67 market makers, 500 liquidity
consumers, 500 mean reversion traders and 500 momentum agents. An issue arises regarding the
different time scales that each agent archetype operates on. For example, some archetypes place
substantially more orders than others, leading to the data set we generate having imbalance between
the classes. We produce a balanced dataset by simply down-sampling the over-represented classes.
The dataset used to train the model consists of the limit order book snapshots representing the
state-space, individual agent order details representing the action-space and the agent archetype as
the label. The state-space comprises the two best bid and ask prices and sizes in the limit order book
prior to the agent’s order. We also compute other features including the mid price M(t), the last
5 observed midprices by the agent, the spread (the difference between the best ask price A(t) and
best bid price B(t)), volume imbalance (ratio of the best ask size to the best bid size) and the order
flow imbalance [13], an imbalance metric tracking the net order flow in the bid and ask queues. The
action-space contains the order details including the direction of the trade, the price and size of the
order, the relative size of the order with respect to the opposite queue and the difference between the
order price and the mid price. The synthetic data set created consists of 20,000 state-action pairs
(5000 state-action pairs per trading agent archetype).

Model: The classification model used is a simple feed-forward neural network that attempts to infer
the agent archetype given the limit order book state and the agent’s order. The model consists of two
hidden layers with 128 units each. The activation function used is ReLU with a 0.0004 learning rate
and an ADAM optimizer [24]. The train-validation-test split used was 53.6 %, 13.4% and 33.4% of
the state-action pairs respectively and the model was run for 1000 epochs.

Results: Using the synthetic data generated and the model discussed, we obtain an 88% classification
accuracy in predicting the different agent archetypes: market maker (MM), liquidity consumer (LC),
mean reversion trader (ME) and momentum trader (MO) in the test set. The confusion matrix for the
multi-class classification model is shown in Figure 2a. While our model performs well on classifying
the different archetypes, the performance is lower in differentiating between the momentum and mean
reversion trading agents. This is expected given the myopic nature of the classifier and the training
data used to train the model. In Figure 2b, we apply Principal Component Analysis on the feature
maps of the penultimate layer of the neural network and project this onto 3 principal components to
get an understanding of how the model learns to differentiate between the classes. It is clear that there
is a high degree of overlap between the different classes when looking at the first two components
which suggests that the problem is not easy to tackle even in the simple setup proposed.
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4 Conclusion and Future Work

Other than the toy examples demonstrated in Section 3, methods of opponent modeling in financial
multi-agent systems can be useful in a number of scenarios and from different perspectives, including
but not limited to:

Regulation and Safety: Market manipulation strategies represent an element of price distortion
and creation of artificial market conditions, which in turn impedes market efficiency, transparency
and fairness. In the LOB context, spoofing agents, for instance, submit orders only to cancel them
before their execution and then submit a buy or sell order to benefit from the change that their initial
(fake) order caused. The ability to explicitly model the policies of such agents could help in the
early detection of market abuse and avoiding adverse consequences like the flash crash that happened
on May 6, 2010, causing a large and quickly reverting dip in the Dow Jones Industrial Average
stocks. Moreover, Level 6 information, consisting of LOB labeled records, are exclusively available
to exchanges and regulators to verify that market participants are complying with rules and processes
[28]. Having access to such a data set is an opportunity to make a more informed and dynamic utility
modeling. Quantifying proportions of market makers, liquidity takers and buy side participants would
be valuable in detecting signs of recession or unhealthy market conditions.

Decision Making and Automation: Market participants usually only have access to (at most) Level
4 LOB data [28], which is anonymized order flow data with new, modified, and canceled limit orders
placed at a given snapshot. Although this poses a challenge to the disambiguation of limit orders
placed in the order book because it imposes a myopic approach as opposed to using a consistent
timeseries of consecutive orders placed by the same agent, unlabeled data does not fall short of
information and opportunities. Opponent modeling can be used for the detection of iceberg orders
and other forms of hidden liquidity [20]. By studying the occurrence of such orders, a posteriori,
in the LOB and the surrounding market conditions, we can attempt to model the utility behind such
strategies. Ref. [20] studied the correlation between dark orders and market conditions and showed
that market conditions reflected by the bid-ask spread, depth and price movements significantly
impact the aggressiveness of ‘dark’ liquidity supply. If a trader can detect such dark orders through
recognizing a pattern that iceberg order placing agents fail to conceal or through modeling the utility
of such agents and the specific cases that make them submit such orders, they can estimate and take
into account these orders’ effect on the LOB balance and predict a larger than observed spread.

Additionally, the Request for Quotes (RFQ) process is another setting where we could benefit from
opponent modeling. RFQs are used to facilitate trading in illiquid markets e.g. fixed income exchange-
traded funds (ETFs). In this setting, clients send quote requests to multiple dealers for a specific
quantity of a security. Ultimately, the dealer with the most attractive offer wins the auction. In this
single, reverse, and static auction setting, one buyer (the auctioneer/the client) is looking to buy a
single security from multiple sellers (the dealers) who do not observe the offers submitted by the
other dealers, and only receive feedback from the auctioneer once the latter’s decision for the winner
of the auction is made. It is therefore important for dealers receiving RFQs from different clients to
have a good estimate of the expected level at which the other dealers are willing to sell the security to
avoid mis-evaluating the offer price. This can in theory be accomplished by having a good estimate
of the fair value of the asset in question. However, it is difficult to estimate the fair value of the asset
if the asset is illiquid. If a participant is able to infer the utilities, and by extension, the expected
offer prices of each of the other dealers in the auction, they can narrow down their uncertainty about
the fair value of the asset and avoid mispricing it. In RFQs, apart from modeling competitors, it
can be extremely valuable to be able to model clients. In this case data is labeled, as sell side firms
(banks) are aware of their RFQ counterparty (client). Performing efficient client tiering would allow
to respond to client orders in an efficient manner, which is beneficial for both the client and the bank.

Finally, opponent modeling applied to financial markets, can be a step forward in the automation
of decision making. Indeed, explicitly inferring the different market participant strategies would
allow to obtain a tailored, well defined utility function that is inspired from high-performing market
participants.

We have explored the application of opponent modeling approaches to the problem of building
autonomous agents that operate within an auction setting. We have shown how opponent modeling can
be applied in the single and double auction settings. In the former case, we showed that reinforcement
learning agents that directly model their opponents in a single auction market outperform those that

5



do not. In the double auction setting, we considered the problem of identifying participants in a
limit order book from the actions they perform in response to the current state of the order book. We
showed that a supervised learning approach can be used to distinguish between different types of
market participants in a controlled environment using synthetic data.

The simple experiments explored and the initial results obtained are encouraging evidence that
opponent modeling is potentially feasible and useful in settings of interest to the different actors
in the financial markets. Future work in this direction could explore more unsupervised or semi-
supervised learning approaches especially in the case of the continuous double auction settings.
However, the challenges anticipated following such approaches would be around labeling any clusters
obtained which would still require domain knowledge. This suggests the need for both supervised
and unsupervised learning approaches.

Disclaimer

This paper was prepared for information purposes by the AI Research Group of JPMorgan Chase &
Co and its affiliates ("J.P. Morgan"), and is not a product of the Research Department of J.P. Morgan.
J.P. Morgan makes no explicit or implied representation and warranty and accepts no liability, for
the completeness, accuracy or reliability of information, or the legal, compliance, financial, tax or
accounting effects of matters contained herein. This document is not intended as investment research
or investment advice, or a recommendation, offer or solicitation for the purchase or sale of any
security, financial instrument, financial product or service, or to be used in any way for evaluating the
merits of participating in any transaction.
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Appendix: Trading Agents

Market Makers: These are market participants who aim to provide liquidity in the LOB by placing
orders on both sides of the order book. That is, given the market’s current mid price M(t), a market
maker will place orders at prices B(t) = M(t) − pb(t) and A(t) + pa(t) where pa(t) and pb(t)
are chosen according to some strategy. Market makers operate under the assumption that there is
enough trading activity for the instrument that they are operating in, and that the aggregate buying
and selling of that instrument will net them a profit proportional to the difference in the prices they
offer A(t)−B(t). This difference is referred to as the spread offered by the market maker. In our
experiments we utilize two basic market making strategies: The first places two orders (one buy and
one sell order) at the top of the book (i. e. the highest bid price and lowest ask price in the order
book respectively) at each time step. The volumes of the orders are chosen at random following a
uniform distribution within fixed bounds vmin and vmax. The second strategy takes a similar approach
but places orders deeper into the book at prices 1, . . . , N levels above and below M(t) for N chosen
randomly from a uniform distribution within fixed bounds Nmin and Nmax. In addition, we include an
implementation of the Avellaneda-Stoikov strategy [3], which dynamically adjusts its bid and ask
prices as a function of volatility and the amount of inventory held by the agent.

Liquidity Consumers: In our setup, liquidity consumers represent directional traders placing market
orders to buy/sell a given quantity at the best available price. Each agent is configured to place a buy
or sell order with the direction and order size chosen at random from a uniform distribution.

Momentum Traders: The momentum agents base their trading decision on observed price trend sig-
nals. Our implementation compares the 20 past mid price observations with the 50 past observations
and places a buy order of random size, if the former exceeds the latter and a sell order otherwise.

Mean Reversion Traders: These represent agents placing orders in the market following mean
reversion signals. In our setup, we have two groups of agents following these type of signals. The first
looks at the divergence from an exponentially weighted moving average signal and places buy/sell
orders if the price deviates above/below a certain number of standard deviations away from the
average. The second group utilizes a similar approach using the Relative Strength Index (RSI) signal
[36] instead. The RSI is a technical indicator that is used to detect and identify mean reversion. It is
defined in terms of the exponential moving average, and the average of up and down price moves
over a set period. Although usually the RSI is used on close prices, we will be using a micro-structure
variant of RSI where we will look at the time series of mid prices at the tick level. Traditionally,
[36], when RSI is greater than the 70 level, the stock is considered to be overbought, and when the
indicator is lower than the 30 level, the stock is considered to be oversold. Our agent therefore places
a sell order when the stock is overbought, and a buy order when it is oversold and makes no action
when the stock is neutral.
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