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Abstract

Exchange traded funds (ETF), which are baskets of securities that trade on the
stock market, have become a popular investment tool, but potentially increase the
price co-movement of their underlying securities. We study index-based ETFs,
because underlying securities trade on the same market as their corresponding ETF,
which creates ample opportunities for traders to arbitrage between price deviations
in the ETF and the market index. Considering the increase in market volatility in
2018 and 2019 in the US stock market, we examine if an ETF spreads mini flash
crashes, or small volatility events, from one of its underlying symbols to another.
We address this question in a simulated environment with an ETF and two symbols
which compose the ETF’s portfolio. We explore two market environments, one
with an ETF and arbitrage agents, and one without an ETF and arbitrage agents. We
find that the presence of an ETF and arbitrage agents increases underlying symbols’
overall volatility, and when one symbol experiences a mini flash crash, the other
symbol does experience a momentary price change in the opposite direction. This
supports the idea that ETFs potentially increase market-wide volatility by spreading
volatility events through their portfolios. To further this work, we hope to utilize
learning to implement smarter arbitrage agents and smarter background agents who
might avoid adverse selection by not trading during mini flash crashes.

1 Introduction

Exchange traded funds (ETF) have become a popular investment vehicle to easily and efficiently
gain more market exposure. An ETF is a portfolio of securities that trades on the stock market.
The underlying securities in an ETF’s portfolio can be any traded entity, such as stocks, bonds, or
commodities. Any investor who can access the stock market themselves or through a broker, can
also trade ETFs, making them more accessible to average investors than other funds [Antoniewicz
and Heinrichs, 2014]. ETFs also provide opportunities for lower trading costs, lower risk, and lower
volatility [Golub et al., 2013].

This work focuses on index-based ETFs, which are ETFs whose underlying securities are stocks that
compose a market index. A market index is a value meant to track some aspect of the stock market.
Some examples of market indexes are the Standard and Poor’s (S&P) 500 and Dow Jones Industrial
Average (DJIA) which track market performance, or the Volatility Index (VIX) which tracks market
volatility. An index-based ETF is designed to track its corresponding market index, but an ETF also
has a trading price, because it trades as a symbol on a stock market. When the market is open, a
market participant can observe the trading price of the ETF and calculate the current value of the
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market index through the underlying symbols, which in turn creates arbitrage opportunities between
the ETF’s trading price and the market index.

Arbitrage opportunities can help an ETF’s trading price track its corresponding market index [An-
toniewicz and Heinrichs, 2014], but they also tether the price volatility of an ETF’s underlying
symbols [Ben-David et al., 2015]. The rise in market-wide price volatility throughout 2018 and 2019
has become an increasingly scrutinized topic as some posit an imminent recession and a decrease
in investor trust [Carlson, 2019, Li, 2019]. This recent increase in market-wide volatility raises
questions about the role ETFs may play in amplifying this volatility through price co-movements in
their portfolios. We specifically focus on mini flash crashes, which are short volatility events where
the price rapidly drops, then quickly reverts back to a similar price as preceded the drop.

Hypothesis: We hypothesize that the presence of an ETF in a market serves to transmit mini flash
crashes from one underlying symbol to other underlying symbols in its portfolio.

To explore this question we utilize an autonomous agent-based model. Our market consists of multiple
stocks which compose the portfolio of an ETF. We study our simulated market with and without
an ETF. We introduce a mini flash crash to a single underlying symbol by way of a trader quickly
submitting a series of large marketable limit orders to determine if arbitrage strategies can impact the
prices of the other underlying symbols.

Prior work examining ties in market volatility to ETFs has mostly used quantitative models and
historical data [Ben-David et al., 2015, Da and Shive, 2017, Lynch et al., 2019, Madhavan and
Morillo, 2018]. Using a simulated model instead allows us to examine otherwise identical market
environments with and without an ETF present. When an ETF is present, we implement a trading
strategy that trades on arbitrage opportunities between the ETF and its underlying symbols. This
allows us to observe whether trading strategies dependent on an ETF and its portfolio directly impact
their underlying symbols’ price volatility.

We employ a simulated market model using a standard limit order book and message system similar
to the US stock exchange NASDAQ [Byrd et al., 2019]. Our market contains two symbols which
compose an ETF’s portfolio. We run our model with and without the ETF present in the market.
Our model is populated with 100 background agents per symbol, and when an ETF is present there
are 50 arbitrageurs which trade only on the ETF and 50 arbitrageurs which trade on both ETF and
underlying symbols. We also use one impact agent to submit a series of large, marketable orders to
create a mini flash crash.

We find that the presence of ETFs do increase the volatility of their underlying symbols. When one
underlying symbol experiences a mini flash crash, the other symbol also experiences a mini flash
crash in the opposite direction when an ETF is present. We also observe that the overall volatility of
underlying symbols increases. This demonstrates that ETFs can spread volatility events through their
portfolios and contribute to market-wide volatility.

This paper is organized as follows. We next discuss prior work in Section 2. In Section 3 we provide
an overview of an ETF’s market structure and the arbitrage opportunities this structure creates. We
then describe the market mechanism for our simulated ETF environment in Section 4. Section 5
presents our findings on the impacts of mini flash crashes in a market with and without an ETF. Lastly,
we conclude in Section 6.

2 Related Work

Our market model is based off of and expands on that of Byrd et al. [2019]. We also use background
agents that adopt a zero-intelligence (ZI) strategy [Gode and Sunder, 1993, Farmer et al., 2005]. Our
exploration of transparency and explainability of ETFs’ impact on market volatility is different than
the questions addressed in the previous work of similar simulated market models.

The majority of prior work uses historical data and quantitative models to analyze the impact of ETFs
on the volatility of their underlying symbols. Ben-David et al. [2015] constructed a quantitative model
and used historical data to conclude that ETFs increase the volatility of their underlying symbols. Da
and Shive [2017] also analyzed historical data and found that ETFs contribute to price co-movement
in the symbols in their portfolios. In contrast, Madhavan and Morillo [2018] found that underlying
symbol price co-movements correlate to macro-market movements, rather than the presence of the
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ETF. Lastly, Lynch et al. [2019] implemented a real trading strategy and discovered that traders can
make a profit using ETF arbitrage because of portfolio price co-movements.

There are also previous studies examining what leads to ETF arbitrage opportunities. Using historical
data, Box et al. [2019] found that a price shock or order imbalance in an ETF’s underlying portfolio
typically precedes ETF arbitrage opportunities. In our study we use mini flash crashes, a type of price
shock, to study the market impacts of ETF arbitrage. Marshall et al. [2013] studied historical data
and found that the difference between the best visible bid and offer increases before ETF arbitrage
opportunities.

To our knowledge, there is little prior work examining the impact of ETFs on market volatility in a
simulated environment. We study this question with an autonomous agent-based model because we
can then study the exact same market environment with and without an ETF. We can also be certain
in a simulated environment that volatility in the underlying does not stem from externalities.

3 ETF Market Structure

The market structure of an ETF is unique in that ETFs actually trade on two markets. An ETF trades
on the stock market like any other stocks, but rather than its value being derived from a company, the
value is based on a portfolio of other securities. Similar to other portfolio management funds, such as
hedge funds, an ETF also allows investors to accrue and liquidate fund holdings. This fund market is
referred to as an ETF’s primary market, and the stock market is the ETF’s secondary market. Since an
ETF trades on two different markets, it has two potentially deviating prices. This creates an arbitrage
opportunity for market participants able to detect and act on deviations between the ETF’s two prices.

3.1 Primary Market

An ETF is a portfolio management fund, and like various types of these funds, a select few participants,
commonly referred to as authorized participants (AP), can invest and divest in an ETF at a time
and price determined by its fund managers [Novick et al., 2017]. An AP can trade daily at the Net
Asset Value (NAV), the price of the ETF in the primary market. For an index-based ETF, the NAV
is calculated by finding the true value of the market index at the close of the stock market. Once
the NAV is determined, the fund will accept orders until a predetermined time when all orders are
executed. These orders are referred to as basket orders, which are composed of shares of the ETF or
shares of the underlying symbols. APs submit basket orders to the fund manager in return for shares
of underlying symbols or shares of the ETF, respectively [Gastineau, 2004]. To submit a basket order,
an AP must first acquire shares of the ETF or underlying symbols on the stock market. After a basket
order is executed, the AP can trade its newly obtained shares on the stock market.

A notable aspect of the ETF primary market is that like other portfolio management funds there are
high barriers to entry. APs tend to be large institutional investors because they need to have a lot of
capital and resources to create basket orders on an ETF’s primary market [Antoniewicz and Heinrichs,
2015]. While the primary market is fairly exclusive, ETFs are unique for portfolio management funds
in that their secondary markets are much more accessible to a variety of investors.

3.2 Secondary Market

In contrast to other portfolio management funds, ETFs also trade on a secondary market, which is the
stock market. A stock share of an ETF corresponds to a small portion of the ETF’s portfolio. On the
stock market, an ETF trades like any other symbol where traders can submit orders to buy or sell
shares of the ETF on a stock exchange [Engle and Sarkar, 2006]. When a trader submits an order, it
will either transact with an order on the opposite side, or will rest in a limit order book until it can be
transacted or the trader cancels the order. Since an ETF has an active order book throughout a trading
day, it also has a trading price on its secondary market. We define the trading price of an ETF as
the midpoint between the highest bid price and lowest offer price for visible volume in its secondary
market’s limit order book.

An ETF’s secondary market gives an ETF much lower barriers to entry than other portfolio manage-
ment funds [Poterba and Shoven, 2002]. Any investor who can gain access to the stock market, which
is typically done through a broker, can invest in an ETF. The accessibility of the secondary market is
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a principal reason for the popularity of ETFs [Golub et al., 2013]. Participants in the primary market
can also trade in the secondary market.

3.3 Arbitrage between the Primary and Secondary Markets

An ETF trades at two prices, the NAV and trading price on its primary and secondary markets,
respectively. Even though the NAV is only calculated once per day, it can be estimated throughout the
secondary market’s trading day by calculating the market index. When the trading price drifts from
the market index, a trader can make a profit by buying the lower priced asset and selling the higher
priced asset. Arbitrage between these two prices is encouraged because it helps force the trading
price to more closely track the index [Antoniewicz and Heinrichs, 2014].

While any secondary market participant can arbitrage price deviations between the market index and
trading price, this is a particularly beneficial arbitrage opportunity for participants with access to both
the primary and secondary market [Poterba and Shoven, 2002]. Such a participant can arbitrage in
the secondary market, then submit basket orders in the asset it is long in for shares of the asset it
shorted. It can cover its shorts in the secondary market, making it overall net zero.

4 Market Mechanism

4.1 ABIDES

To investigate the potential for an ETF to spread a mini flash crash from one symbol to another, we
employ a discrete event market simulation constructed on the ABIDES platform [Byrd et al., 2019].
1 The platform provides a continuous double auction market with securities priced in cents, a set
of typical background agents, and a kernel which drives the simulation with nanosecond resolution
while permitting sparse activity patterns to be efficiently computed.

For the ETF secondary market, we use the provided ABIDES exchange agent, which operates in
a manner similar to the NASDAQ. The market is open from 09:30 to 16:00, lists any number of
securities for trade, and provides a distinct order book mechanism for each security. The exchange
accepts limit orders of any share volume, and cancellation of same, and transacts (including partial
execution) those orders against a security’s limit order book with a typical price-then-FIFO matching
algorithm. The exchange responds to requests for market hours, last trade prices, and market depth
quote requests, with depth one representing the current best bid and ask.

4.2 Primary Market in ABIDES

After the exchange agent stops accepting orders, the primary market receives the close price of each
underlying symbol in its ETF’s portfolio. The primary market uses these closing prices to calculate
the value of the index and uses this value as the NAV. Then the primary market opens for basket orders.
Every basket order it receives is executed at the NAV, and the agent is notified of its transaction.

4.3 Market Index

We define this model’s market index at time t as the sum of the price of a bundle of stocks:

ιt =

n∑
i=1

pi,t. (1)

We based our market index off the DJIA, which is a US stock market index that tracks 30 large market
capitalization stocks. However, our index is simpler than the DJIA, which sums the prices of these 30
stocks and divides by the DJIA divisor. Our market index calculation simplifies the basket orders in
the ETF primary market, because one share of the ETF is equivalent to a basket of one share of each
symbol in its portfolio.

1The ABIDES source code is available at https://github.com/abides-sim/abides.
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4.4 Exogenous Price Time Series

Similar to Chakraborty and Kearns [2011], we assume the existence of a mean reverting exogenous
price time series or fundamental value series for each security, which represents an immeasurable
consensus of the “true” value at any point in time. In this work, we utilize a “sparse discrete”
fundamental which follows an Ornstein-Uhlenbeck (OU) process [Uhlenbeck and Ornstein, 1930]
augmented with periodic “megashocks” of higher variance. Given a prior value for the sparse
discrete fundamental, a value can be obtained for any subsequent time t by sampling from a normal
distribution with:

E[Qt] = µ+ (Q0 − µ)e−γt (2)

Var[Qt] =
σ2

2γ
(1− e−2γt) (3)

as shown in Chakraborty and Kearns [2011], where µ is the long-term mean fundamental value, Q0 is
the prior fundamental value from which we wish to sample a new value for time t, a mean reversion
rate γ, and a volatility value σ. This fundamental process has a benefit over the typical discrete mean
reverting process when time resolution is substantially finer than the typical agent arrival rate, in that
we can obtain Qt directly from Q0 without the requirement to compute all intermediate Q1 . . . Qt−1.
That is to say, it permits the simulation to “skip time” whenever no agents will arrive at the market.

The OU process produces a time series with a single scale of variance, which we configure to provide
appropriate noise during mean reversion. To obtain a price time series more similar to a stock price
over a longer window, we augment the OU process with the application of stochastic “megashocks”
as in Byrd [2019] that arrive according to a Poisson process and apply price deviations drawn from
a higher variance bimodal normal distribution with mean zero, and positive and negative modes
substantially away from zero. This is intended to represent exogenous events which can substantially
alter value perception and periodically provides much larger price moves from which the OU process
can revert.

4.5 ETF Fundamental Calculation

Most symbols in our market model have independent fundamental values, but an ETF’s fundamental
is dependant on the value of other symbols in the market. Our ETF is an index-based ETF, and we
use the index from Equation 1. Using this index and the value of the fundamental of symbol i, we
can find the fundamental of the ETF at time t by:

ft =

n∑
i=1

Qi,t. (4)

4.6 Background Agents

We employ a population of background traders for our experiments drawn from the Zero Intelligence
(ZI) family of strategies [Gode and Sunder, 1993]. Our background ZI agents are modeled after those
found in Wah et al. [2017]. The ZI traders arrive according to a Poisson process with λa, cancel any
outstanding orders, and place an order with equal probability to buy or sell. Each ZI trader is assigned
a single security of interest. When arriving at the market, an agent receives a noisy observation of
the exogenous price time series described above and uses this observation to update an individual
Bayesian belief concerning the current fundamental value of the security. The agent then projects this
belief forward to the end of the market trading period to obtain an estimated final valuation for the
security. An agent uses this final valuation and a private valuation to select a limit price.

To ensure that an order will be gainful, the ZI agent randomly selects a level of surplus R ∈
[Rmin, Rmax] to demand, and shades its bid to produce that surplus if transacted, or zero if not
transacted. Each agent also has a specified hyperparameter η. If a market order would guarantee
surplus of at least ηR, the agent will place that order instead of its computed limit order.
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4.7 Impact Agent

We implement an impact agent to induce a mini flash crash. Beginning at time τ , this agent submits a
rapid series of n marketable sell orders of size q, δ seconds apart. This method consumes the bid side
of the order book, causing the price to rapidly drop. Once other trades continue to submit orders, the
price typically recovers.

4.8 ETF Arbitrage Agent

We develop two arbitrage strategies between the ETF and its underlying symbols. Similar to the
background agents, these arbitrage agents arrive to the market according the a Poisson distribution
with λa. When an arbitrage agent enters the market at time t, it calculates the difference between the
ETF trading price, pt, and the market index ιt:

∆t = pt − ιt. (5)

These agents only submit marketable orders, so if they sell an asset they will price it at the best
available bid, and if they buy they will price their order at the best available offer.

ETF Only Arbitrage This agent will only trade on the ETF when it arbitrages, and it makes trading
decisions with some ε ≥ 0: {

∆t > ε Sell ETF,
∆t < −ε Buy ETF.

ETF Market Maker The market making agent trades both the ETF and its underlying symbols.
Similarly to the ETF only arbitrage agent, it makes trading decisions with some ε ≥ 0:{

∆t > ε Sell ETF and buy underlying symbols,
∆t < −ε Buy ETF and sell underlying symbols.

These agents trade on the primary market. When the primary market opens, they receive the NAV,
then decide if they should submit basket orders by comparing the NAV and close price of the ETF,
pT , where T is the time of the secondary market close. More formally:{

NAV − pT > 0 Basket order of ETF shares for underlying symbol shares,
pT −NAV > 0 Basket order of underlying symbol shares for ETF shares.

If they submit basket orders, then they can hopefully end the day net zero. The market makers need
to be the fastest agents in the system in order to be profitable when trading on so many symbols.

5 Experimental Results

5.1 Market Environment Settings

We explore two market environments, both have one exchange agent and two symbols, but one
environment also contains an ETF whose portfolio is composed of the two other symbols. The
market environment which contains the ETF, also has an ETF primary market. These two market
environments are identical, except one contains an ETF while the other does not. The exchange agent
accepts orders between 09:30 and 16:00. The ETF primary market accepts orders between 17:00 and
17:01.

Given the nanosecond resolution of ABIDES, we use the sparse fundamental previously discussed.
For each symbol which is not an ETF, we produce its global fundamental from Equations 2 and 3„
with fundamental mean µ = 105, mean reversion γ = 1.67× 10−13, and market shock σ = 0. The
sparse fundamental experiences a series of megashocks throughout the trading period, and these arrive
according to a Poisson distribution with λ = 2.77778×10−13. We draw the size of these megashocks
from a binomial normal distribution with means µs,1 = 0 and µs,2 = 103, and variance σs = 5×104.
Each background agent can observe each fundamental with observation noise σn = 106.

Each symbol in this market is populated with 100 background agents, so in a market environment
with an ETF there are a total of 300 background agents and an environment with no ETF there are
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Table 1: Strategies employed by the background traders.

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7

Rmin 0 0 0 0 0 250 250
Rmax 250 500 1000 1000 2000 500 500
η 1.0 1.0 0.8 1.0 0.8 0.8 1.0

(a) Market contains an ETF and arbitrage agents. (b) Market does not contain ETF and arbitrage agents.

Figure 1: Average price time series over 100 simulation runs of underlying symbol s0. This symbol
experiences a mini flash crash at 13:00 through an impact agent submitting a series of large trades.

200 background agents. Table 1 specifies the strategies of the background agents. The background
agents arrive to the market according to a Poisson distribution with λa = 10−12. ABIDES lets us
control the message delays of each agent, and the background traders have the highest latency in
the market. These agents submit orders of size q ∈ [100, 200, . . . , 1100], but can hold a maximum
number of units at any time qmax = 103. The size of each order is drawn from a uniform random
distribution. Lastly, the private value variance is σPV = 5× 106.

We create a mini flash crash in one underlying symbol with a single impact agent, which submits its
first trade at τ = 13:00. It then submit n = 10 trades with size q = 600 and δ = 6 seconds between
each trade. This agent has low latency so there is little information delay between different market
instances.

We implement two ETF arbitrage strategies when there is an ETF in the market, with 50 ETF only
arbitrage agents and 50 ETF market maker agents. For both of these strategies ε = 250, and they
submit orders of size q = 100. The ETF only arbitrage agents arrive to the market according to a
Poisson process with λa = 5× 10−3, while the ETF market makers arrive with λa = 5× 10−5. Both
of these traders have lower latency than background traders, but the market makers are faster and
have the lowest latency in our market environment.

5.2 Results

In this paper we analyze ETFs’ impact on their underlying symbols when one symbol experiences a
mini flash crash. To assess this impact we examine and compare the price of the underlying symbols
in environments with and without an ETF. We take the average price of each underlying symbol over
100 simulation runs, which allows us to make more concrete conclusions on the impact of the ETF
on its underlying symbols’ volatility.

Figure 1 depicts the average price of s0, which is the underlying where an impact agent enters the
market at 13:00 and creates a mini flash crash. Figure 1b shows s0 when there is an ETF and ETF
arbitrage strategies in the market, while Figure 1b shows when there is not an ETF in the market.
In both market environments it is clear the impact agent causes a distinct mini flash crash in s0.
However, s0’s price when arbitrage agents are present is more volatile throughout the day. This is
likely a result of the high number of ETF market makers in the market, and that these agents move
the order book more than the background agents because they only submit marketable orders.
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(a) Market contains an ETF and ETF arbitrage agents. (b) Market does not contain ETF and arbitrage agents.

Figure 2: Average price time series over 100 simulation runs of underlying symbol s1. An impact
agent does not trade on this symbol.

Figure 2 depicts the average price of s1, which is the symbol in the ETF’s portfolio that does not
possess impact agent activity. Around 13:00 when the impact agent trades on symbol s0, Figure
2b shows that symbol s1 sees no price volatility or reaction to the mini flash crash in s0. However,
when there is an ETF and ETF market makers present, Figure 2a shows that symbol s1 reacts to
the mini flash crash by experiencing its own volatility event in the opposite direction. At 13:00 s1
momentarily increases in price at a smaller magnitude than the price drop in s0. This demonstrates
that while an ETF exists, the price of the underlying symbols do not necessarily move in the same
direction, but they do move together. Therefore, ETFs do impact and increase the market volatility in
their underlying symbols by spreading events like mini flash crashes through their portfolios.

6 Conclusion

We analyze a simulated market model with a stock market and ETF primary market. We explore two
market environments, one with an ETF and one without an ETF, though both environments contain
two symbols which compose the ETF’s portfolio. The market is also populated with numerous
background agents, an impact agent which creates a mini flash crash, and ETF arbitrage agents. These
arbitrage agents only trade in the environment when an ETF is present. We find that the presence of
an ETF in a market can transmit a volatility event, like a mini flash crash, throughout its underlying
symbols. Though we do find that the other underlying symbols experience a price change in the
opposite direction of the symbol where the mini flash crash originated.

A limitation of this study is that the size of our ETF portfolio is only two symbols. For most ETFs in
the real-world, their portfolios are significantly larger, and we might get more insight about real ETFs
if we increased the size of our portfolio. Another limitation is the limited type of background agents.
We only implement ZI agents, which do not consider the order book or previous transactions, so these
background agents do not change their trading decisions based on a mini flash crash. It could be
beneficial to also utilize trading strategies dependent on the order book and price movement, because
these agents might exacerbate mini flash crashes.

We hope to further this work and explore this question with learning and smarter agents. Currently
our arbitrageurs to not consider whether trading is beneficial to their profits later on, and it could
be interesting to develop an arbitrageur who learns better times to take advantage of arbitrage
opportunities. It could also be interesting to create a background agent who attempts to learn when
the price is about to change, so these agents could potentially avoid adverse selection by updating
and canceling orders leading into volatility events. Lastly, it would be insightful to find the market
equilibrium to determine if certain traders are more profitable than others in a market with an ETF.
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