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Abstract

Machine learning (especially reinforcement learning) methods for trading are
increasingly reliant on simulation for agent training and testing. Furthermore,
simulation is important for validation of hand-coded trading strategies and for
testing hypotheses about market structure. A challenge, however, concerns the
robustness of policies validated in simulation because the simulations lack fidelity.
In fact, researchers have shown that many market simulation approaches fail to
reproduce statistics and stylized facts seen in real markets. As a step towards
addressing this we surveyed the literature to collect a set of reference metrics
and applied them to real market data and simulation output. Our paper provides a
comprehensive catalog of these metrics including mathematical formulations where
appropriate. Our results show that there are still significant discrepancies between
simulated markets and real ones. However, this work serves as a benchmark against
which we can measure future improvement.

1 Background and related work

1.1 Motivation

Most professional investors, hedge funds, investment institutions and banks need robust means of
testing trading strategies in simulation before “going live” with funds at risk. A key reason for this
is to gain assurance that the strategy is likely to be effective. Alpha strategies aim to profit from
price movements, while execution strategies are intended to complete large volume orders while
minimizing transaction costs. For instance, a pension fund may have concluded that it should reduce
its holdings in a particular stock and therefore trigger a sell order for that asset. If this order were sent
to an exchange as a market sell order, the price would likely fall significantly and provide the seller
a lower average price than they would hope. In order to reduce transaction costs, it is a common
practice to design execution strategies so that price impact is minimized by distributing a larger order
as a set of smaller orders over time [1].

Significant research effort is aimed at applying Reinforcement Learning to a variety of trading
problems in which the learners are trained in simulation: A reinforcement learning market-maker
was presented in [2]; a reinforcement learning approach to algorithmic execution was introduced in
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[3]; deep hedging a portfolio of derivatives (including over-the-counter derivatives) in the presence of
market friction was considered in [4]; LSTM representations for an RL trading agent was given in
[5].

In these financial trading problems, the statistical properties of the environment and how the market
responds to trading activity is often unknown and difficult to model. In such cases, repeating the
process a number of times in a simulated environment allows us to eliminate the need of knowing
transition probabilities explicitly, and an optimal policy can be learned from the gained simulated
experience requiring realistic market simulation tools.

In real-time algorithmic trading, the actions of any given agent incurs response from other market
participants. In simulation, autonomous agents can choose to place orders at any time and market
response to them will not be reflected in historical data. Therefore, simple market replay of historical
data is not sufficient for back testing or strategy construction. Interactive agent-based simulation
(IABS) can potentially simulate interaction between individual market participants [6]. In such
simulators, price arises from incentives of fully autonomous agents each of whom act rationally in
order to maximize their profits. These principles reflect how real markets operate; the challenge is,
however, to find realistic agent configurations and prescribe agent behavior in such a way that their
actions produce synthetic time series whose statistical properties resemble real markets.

1.2 Stylized Facts of Limit Order Book (LOB) Behavior

Later sections of this paper rely on the reader’s understanding of the mechanisms by which electronic
markets operate, so we briefly review them here. Public exchanges such as NASDAQ and NYSE
facilitate the buying and selling of assets by accepting and satisfying buy and sell orders from multiple
market participants. The exchange maintains an order book data structure for each asset traded. The
LOB represents a snapshot of the supply and demand for the asset at a given time. It is an electronic
record of all the outstanding buy and sell limit orders organized by price levels. A matching engine,
such as first-in-first-out, is used to match incoming buy and sell order interest [7].

Order types are further distinguished between limit orders and market orders. A limit order specifies
a price that should not be exceeded in the case of a buy order, or should not be gone below in the
case of a sell order. Hence, a limit order queues a resting order in the LOB at the side of the book
of the market participant. A market order indicates that the trader is willing to accept the best price
available immediately. A diagram illustrating LOB structure is provided in Figure 1.
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Figure 1: Visualization of the LOB structure.

Many of the metrics we present below are derived from the observation of the LOB over time.
Properties of LOB behavior that are repeated across a wide range of instruments, markets, and time
periods are referred to as stylized facts [8].

Evaluating the statistical properties of simulated asset returns, order volumes, order arrival times,
order cancellations, etc and comparing them to those generated from real historical data allows us to
infer the level of fidelity of a simulation. The question of whether stylized facts originate from traders’
behavior, or if they are a natural consequence of order book markets, has been widely discussed in the
literature. If some stylized facts can be derived from markets populated only by zero intelligence (ZI)
agents which make decisions without the knowledge of market microstructure, then these facts must
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originate from the mechanism that is governing the markets and not from strategic agent behavior.
For example, [9] showed that a market simulation that consists only of ZI agents that place limit and
market orders independently at random is able to reproduce price and spread dynamics as well as
market impact. Ability of ZI agents to reproduce fat tails and long range dependence was shown in
[10], however, the authors emphasized that in order to reproduce correlated order phenomena such as
volatility clustering, strategic agent behavior may be required.

In this paper, we provide a survey of several groups of LOB stylized facts across multiple asset
classes that lead to realism metrics with respect to empirical distributions (defined in Section 2).
We compare two simulator configurations: one that contains zero intelligence (ZI) agents only and
another that combines ZI agents with minimal strategic behavior agents. We find that the more diverse
agent configuration behaves more similarly to real markets; however, we conclude that for more
robust simulation of collective market phenomena online learning adaptive agents might be necessary.
[11, 10].

1.3 Related work

IABS methods allow us to study phenomena that emerge as a consequence of multiple participant
interactions and are difficult to model otherwise. Examples of such complex phenomena include
both the routine market microstructure events such as market response to an individual participant’s
trading [12]; and rare events such as flash crashes [13, 14, 15] as well as extreme market shocks.

Wellman helped establish an empirical approach to the study of markets using simulated multi-agent
systems [16]. In this approach, referred to as Empirical Game Theoretic Analysis (EGTA), many
tens of thousands of simulations are run during which the strategies of agents are adjusted until the
system reaches a Nash equilibrium. It is only after the system reaches equilibrium that its statistical
properties are evaluated. We regard this as a desirable approach, but we have not yet implemented the
methods necessary for discovering equilibria in our experimental platform.

One notable example of multi-agent simulator use success is the NASDAQ tick size experiment
where NASDAQ researchers experimentally demonstrated that under some agent scenarios reducing
tick size would actually lead to increased spreads (an undesirable property) and would negatively
impact price discovery [17, 18]. These findings are counter-intuitive and illustrate importance of
multi-agent simulations for market policy research since one would expect that smaller tick size
results in tighter spreads. Some explanations of these observations include the possibility of the
existence and proliferation of parasitic strategies that can take advantage of better prices to make
the market more jittery and volatile. These findings are particularly important since NASDAQ is
interested in finding policies that have not yet been discovered and used by market participants in
order to prevent potential market manipulations.

In real-time trading, injecting orders to the market induces other market participant activity that
typically drives prices away from the agent. This activity is known as market impact [1, 19]. Presence
of market impact in real time implies that a realistic trading strategy simulation should include
deviation from historical data. In literature, it is common to make an assumption of negligible market
impact given the size of agent orders is small and sufficient amount of time is allowed between
consecutive trades [20]. A simple two-agent simulated market environment that consists of an
algorithmic trading agent and the rest of the market is presented in [21]. It is a partially synthetic
data model that allows to deviate from historical data only at times when agent places market orders
which are known to cause highest market impact. This model is, however, only suited for small order
placement, and is unable to capture more complex dynamics of transient price impact [22, 23].

While modeling the market as an interplay of multiple agents seems a natural approach to mimic real
market collective emergent behavior, justifying the realism of such approach for validating new trading
strategies is difficult. Agent modeling typically relies on common sense hand-crafted rules (e.g.,
[10]), which can be difficult to calibrate as historical data labeled with details about each individual
constituent agent behavior is typically not available for public use. Several calibration approaches—
e.g. error minimization to find parameters for the asset pricing model with heterogeneous beliefs [24]
and using Bayesian parameter estimation techniques in the simulated context—have been introduced
[25]. When individual agent- or execution strategy-specific data is available to the researcher, it can
be used for the simulator calibration (e.g., [21, 26]).

One can view the multi-agent LOB environment as a non-cooperative game in which every agent
pursues their own goal and there is no communication among agents [27]. From a game-theoretic
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perspective, a simulated environment is more realistic when it reaches a Nash equilibrium, where
every player’s parameters are configured so that each can do no better by unilaterally changing its
strategy. Agents that learn to maximize their long term rewards by reinforcement from empirical
equilibrium environments have been discussed in [11].

Other approaches to IABS realism can include inverse learning agents’ rewards from the market [26];
generating synthetic LOB data using GANs [28]; incorporating feedback from real-time trading into
the simulation [29] and building adaptive agents that are governed by the evolutionary principles and
can learn from experience [30, 31].

2 Realism metrics

We now focus on and review a series of metrics of LOB behavior found in the literature. One way to
establish IABS realism is to ensure that simulated LOB time series mimic the stylized facts derived
from real market histories. Below we review several groups of such stylized facts across multiple
asset classes [26, 32, 9, 10].

2.1 Notation and definitions

For simplicity of presentation, we introduce some notation and definitions that will be used throughout
this paper. At time t, let bt be the best bid price, and let at be the best ask price. We define mid-price
as mt = at+bt

2 . Choose time scale ∆t. Given a time scale ∆t, which can range from milliseconds to
months, the log return (or simply return) at scale ∆t is defined as rt,∆t = lnmt+∆t − lnmt. Let
σ∆t be return volatility which can be calculated as standard deviation of price returns.

Let x be size of a new order placed into LOB. Let T be a lifetime of an order until it is fully executed
or canceled. We denote by bt −∆ the price of a new buy limit order, and at + ∆ the price of a new
sell limit order. Notice that ∆ can be negative. Let Va and Vb be the volumes available at the best bid
and ask price. Slice LOB price and volume time series in small non-overlapping time intervals. For
each time interval τ , let µVτ be the average traded volume and στ,∆t be the return volatility over τ .
Furthermore, let P (.) denote probability density function of a given quantity.

2.2 Stylized facts about asset return distributions

Multiple stylized facts about price return distributions were studied in [8] for equity markets as well
as in [33] for foreign exchange and rates markets.

• Absence of autocorrelations Linear autocorrelations corr(rt+τ,∆t, rt,∆t) of asset returns
over periods τ longer than 20 minutes are insignificant.

• Heavy tails and aggregational normality The distribution of daily asset price returns
shows fat tails; however, as one increases the period of time ∆t over which these returns
are calculated, asset returns show lower tails. One way to quantify deviation from normal
distribution is to calculate its kurtosis.

• Intermittency At any micro or macro time scale, asset price returns must display high
degree of volatility.

• Volatility clustering High-volatility events tend to cluster in time. A quantity used
to measure volatility clustering is the autocorrelation function of the squared returns
corr(r2

t+τ,∆t, r
2
t,∆t). Empirical studies using returns from various equities indicate that

this autocorrelation function remains significantly positive over several days, which indicate
periods of high volatility clustering [8].

• Long range dependence If one looks at autocorrelation function of absolute returns as a
function of time lag f(τ) = corr(|rt+τ,∆t|, |rt,∆t|), it is empirically shown that it decays
according to the power law distribution f(τ) ∼ τ−β with exponent β ∈ [0.2, 0.4] [8].

• Gain/loss asymmetry Gain/loss asymmetry is prevalent for equity price returns as stocks
lose value faster than they grow [8]. However, this trend is not as pronounced for foreign
exchange and rates products. Skewness is a metric that can be used to quantify the asymmetry
of probability distribution about its mean.
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• Volume/volatility positive correlation Volume and volatility are positively correlated. Lin-
ear regression relationship µVτ ∼ α+ βστ,∆t can be derived from the data [34].

• Returns/volatility negative correlation Asset returns/volatility are negatively correlated.
• Asymmetric causal information flow Coarse-scaled volatility predicts fine-scaled volatility

better than fine-scaled volatility predicts coarse scaled-volatility,

2.3 Stylized facts about volumes and order flow
• Order book volumes Volumes at best bid Vb (and respectively volumes at best ask Va) are

distributed according to Gamma distribution for γ ≤ 1 [35]:

P (Vb) ∼ exp−Vb V −1+γ
b .

• Order sizes Order sizes are power-law distributed [7]. For instance,[36] show examples
when limit order sizes are distributed as P (x) ∼ x−(1+µ) with exponent 1 + µ ≈ 2 and
market order sizes are distributed as P (x) ∼ x−(1+µ) with exponent 1 + µ ≈ 2.3 − 2.7.
Orders tend to have round number of shares (i.e. multiples of 10, 100, etc. are more common
than neighboring sizes); in general, power-law distribution fit is product-specific.

• Number of orders in a fixed time window Number of orders in a fixed time window can
be approximated by gamma or lognormal distributions [36].

• Order inter-arrival times In the literature, LOB order inter-arrival times are suggested to
be fit into exponential [28], lognormal, and Weibull distributions [36].

• New order prices Prices at which new limit orders are placed, are power-law distributed
around bid-ask [36]. Specifically, P (∆) ∼ ∆−(1+µ) with 1 + µ ≈ 1.6 [35].

• Cancellation time, time-to-first-fill and time-to-execution Lifetimes of both cancelled
and executed limit orders are power-law distributed, P (T ) ∼ T−(1+µ) with 1 + µ ranging
between 1.3 and 1.6 for both canceled and executed limit orders [36]. Since an order can
require multiple fills to be completed, one must distinguish between time-to-first-fill and
time-to-completion statistics. Generalized gamma distribution with accelerated failure time
can be used to model time-to-first-fill and time-to-completion distributions [37].

• Time correlation of order flow Individual agent’s order placement decisions depend on
other agents’ actions [10].

2.4 Stylized facts about non-stationary patterns
• Intraday volume patterns LOB volumes are known to exhibit strong intraday patterns. For

instance, historical foreign exchange trading volumes can be approximated by fifth-degree
polynomial "U-shaped" regional sessions that correspond to New York, London, and Tokyo
trading [38]. Similarly, in most equity markets, volumes are highest in the beginning of
trading day, followed by a period of lower activity, and then spike again at the end of the
trading day [7]. Note that making a transformation from physical time to tick (or transaction)
time may help adjusting for intraday non-stationarity [39].

• Seasonal volume patterns Some assets, especially those consumer demand for which is
seasonal (e.g., electricity futures), display strong seasonal volume patterns.

• Intraday sensitivity to macro economic events/holidays Due to product sensitivity to
macro factors, volume spikes are known to occur in foreign exchange and rates markets
during economic announcements. Equities trading is also sensitive to economic events [40].
Additionally, lower trading volumes are observed on holidays throughout all asset classes.
• Intraday volume/spread negative correlation Lower spreads are typically observed dur-

ing periods of higher trading volumes.

2.5 Stylized facts about order market impact

Market impact of order placement is a expected to grow as a function of order volume. For each
time interval τ , define Vbuy,τ and Vask,τ to be buy and sell order volumes in τ respectively. Define
participation of volume in τ as

Pτ =
|Vbuy,τ − Vask,τ |
Vbuy,τ + Vask,τ

.
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Note that 0 ≤ Pτ ≤ 1. Also define ∆mτ to be the observable mid-price move in τ . Discretize the
range for Pτ into bins Bi, i = 1, . . . , N such that Bi = {τ : i−1

N ≤ Pτ ≤ i
N }. For each Bi, define

Mi =
1

|Bi|
∑
τ∈Bi

∆mτ and Pi =
1

|Bi|
∑
τ∈Bi

∆Pτ

to be the average price move and average participation of volume in bins with similar volume
participation. One can then fit the relationship of the form Mi ∼ αP βi through the data [19, 9, 41].

2.6 Stylized facts about cross asset correlations

When simulating multiple assets, cross asset correlation properties must hold. For instance, equity
index and its major constituents must show high degree of correlation [8]. For futures, for example,
asset price moves across term structure are highly correlated and exhibits consistent patterns uncovered
by the PCA (e.g., [33]). It is also worth noting that extreme returns (e.g., 99-percentile returns that
occur during financial crisis) across various stocks or asset classes can be extremely correlated while
their average returns are not [8].

3 Experiments with a multi-agent simulation

3.1 ABIDES - Agent-Based Interactive Discrete Event Simulation environment

In order to evaluate the ability of a given agent configuration to reproduce stylized facts about the
market, we employ ABIDES, an agent-based interactive discrete event simulation environment [42].
ABIDES provides a selection of background agent types (such as agent types described in Section 3.2),
a NASDAQ-like exchange agent which lists any number of securities for trade against a LOB with
price-then-FIFO matching rules, and a simulation kernel which manages the flow of time and handles
all inter-agent communication. Trading agents may not inspect the state of the exchange directly, but
must direct realistic messages to request order book depth, obtain last trade prices, or place or cancel
limit orders through the kernel, which imposes delays for computational effort and communication
latency. Time proceeds in nanoseconds and all securities are priced in cents. The ABIDES source
code is freely available under a BSD-style license at https://github.com/abides-sim/abides.

3.2 Background agent types

In order to conduct experiments, we specify one ZI and three minimal strategic agent types (market
maker, momentum and heuristic belief learning agents). Detailed explanations and examples for the
ZI and HBL agents and the fundamental process which drives them are available in [43].

Zero intelligence agents: Originally introduced in [44], ZI agent class includes a variety of agents
that do not base their trading decisions on the knowledge of LOB microstructure. Similarly to [45],
ZI agents in our implementation are enhanced with knowledge of noisy observation of exogenous
’true’ value of stock which represents agent’s understanding of the outside world (eg. earnings reports,
macro events, immediate trading demand). ZI agents in our experiment arrive to the market according
to a Poisson process and do not use LOB microstructure signals for trading decisions.

Heuristic belief learning (HBL) agent: HBL agents base their decisions on a limited-length his-
torical snapshot of the order stream, which they use to maximize expected surplus using a heuristic
estimation of the probability that a given limit price will successfully transact in the market [46], [47].
Our implementation matches that of [32].

Market maker agent: The market maker agent acts as a liquidity provider by placing orders on both
sides of LOB with a constant arrival rate of 10 seconds. The agent starts by cancelling any existing
orders. It then queries the current spread to determine the prices of the buy and sell orders to be
submitted. The agent is configured to place orders on top N levels on both sides of LOB with the
size split determined by the number of price levels it quotes and the order volume chosen uniformly
at random within fixed bounds. Our implementation is similar to that of [48, 49].

Momentum agents: The momentum agents base their trading decision on observed price trends.
Our implementation compares the 20 past mid-price observations with the 50 past observations and
places a buy order of random size, if the former exceeds the latter and a sell order otherwise.
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3.3 Agent configurations

In this paper we present two background agent configurations, one that is composed exclusively of
ZI agents (sparse_zi_100—contains 100 ZI agents), and one that has both ZI and strategic agents
(rmsc01—contains 1 market maker agent, 50 ZI agents, 25 HBL agents and 24 momentum trading
agents). Note that in both configurations, all agents are permitted to reenter the market. To assess the
realism of sparse_zi_100 and rmsc01 ABIDES configurations, we look at stylized facts about asset
returns and order flow described in Section 2.

4 Experimental results

4.1 Stylized facts about asset return distributions

To derive historical asset return distributions, we analyze minutely intraday log returns of 50 randomly
sampled U.S. exchange-traded equities for each trading day of 2011. The set of equities is resampled
each trading day and is drawn uniformly across all stocks from all exchanges.

• Heavy tails and aggregation normality. We confirm experimentally that both rmsc01 and
sparse_zi_100 show heavy tails and aggregational normality, with rmsc01 being closer to
historical data (see Figure 2).

Figure 2: One-minute (left) and ten-minute (right) log return distributions.

• Absence of autocorrelations Figure 3 (left) shows the correlation coefficient distributions
for lag 1 autocorrelation of log returns over 30 minute intervals. Historical market data
exhibits a notable spike of 0 correlation, in line with previous discussion in Section 2. Both
the sparse_zi_100 and rmsc01 agent configurations fail to capture this stylized fact. When
comparing the overall distribution shape, the rmsc01 configuration resembles the shape of
historical autocorrelation distribution closer.

• Volatility clustering. The average autocorrelation of square returns decays for both histori-
cal and simulated data as time lag increases (see Figure 3 (center)).

• Volume/volatility correlation. Neither simulated distribution of correlation coefficients
between volume and volatility was as skewed or high-variance as that of historical data (see
Figure 3 (right)).

4.2 Stylized facts about volumes and order flow

To derive historical distributions, we consider order book historical data for JPM stock traded on the
NASDAQ exchange for each trading day of June 2019 from 9:30 am to 4:30 pm.

• Number of orders in a fixed time window. Figure 4 (left) shows limit order volume
distribution in a five-minute window for the simulated vs. the historical data. We find that
gamma distribution produces a good fit for these curves.

• Intraday volume patterns. Quadratic curves have been fitted to this data to demonstrate
the "U-shaped" pattern of historical intraday volumes (see Figure 4 (right) ). The simulation
data for rmsc01 shows the reverse of expected activity: namely, reduced trading at the open
and close of the market.
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Figure 3: (left) Distributions of return autocorrelation. (center) Average autocorrelation of square
returns as a function of time lag. (right) Volume/volatility correlation distributions.

• Order interarrival times. Figure 4 (right) shows distribution of interarrival times for
simulated data as well as the historical data. Historical data fits Weibull distribution rather
well. The distribution for rmsc01 is dominated by values close to zero resulting in a poor fit
to the Weibull distribution.

Figure 4: (left) Number of orders in a five-minute window. (center) Limit order interarrival times.
(right) Intraday volume profiles.

5 Conclusion and Discussion

In this paper, we provided a catalog of known stylized facts regarding LOB microstructure behavior
with respect to market realism. We chose ABIDES environment [42] as a simulation platform and
evaluated two experimental configurations of agent types—one exclusively of ZI agents and one with
ZI agents and other agents with minimal strategic behavior.

We observed that the configuration with a more diverse agent population leads to statistics that more
closely mimic real markets, we acknowledge that there is much room for improvement. In particular,
time correlation of order flow and intraday volume patterns are not well reproduced. While additional
constraints might be needed to produce stylized facts about intraday patterns from agents’ incentives
(e.g., require agents to close all positions by the end of the trading day), correlated order behaviors,
especially herding or clustering behaviors, require adaptation of one agent’s behavior in response
to other agents’ actions and will possibly require introduction of online learning agents [10]. For
example, [30] conducted comparisons of non learning and learning agents and concluded that agents
capable of learning and adaption to other agent flows are able to replicate stylized facts about long
range dependence and correlation between volume and volatility better. Specifically, during periods
of high volumes, when more agents are trading in response to others’ behavior, higher trading activity
keeps volume queues available at best bid or ask levels relatively short; hence, LOB layers move
more frequently and, as a result, prices are more volatile. Moreover, in real markets, rational agents
evolve over time by learning to expand effective and cull ineffective trading strategies [31]. Hence,
we believe that enhancing autonomous LOB agents with ability to learn from experience will be a
step towards making simulated environments more robust.
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