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Abstract

Financial markets contain a rich set of multi-
agent learning problems but lack simulators that
could be used to research, develop and test rein-
forcement learning algorithms. In this paper, we
demonstrate the use of agent based modeling to
simulate a dealer market with two types of agents
- market makers and investors. In particular, we
focus on the dynamics that arise from price differ-
entiation and risk management. We show through
experiments that our simulation model is able to
produce known effects in these markets such as
varied price sensitivity among investors and the
benefits of internalization for market makers.

1. Introduction
Deep reinforcement learning algorithms have had consid-
erable success in surpassing human level performance in
several single and multi-agent learning problems. A key
ingredient of these advances has been the availability of gam-
ing and physics simulators which provide a ready stream of
experience for developing, training and testing algorithms.
The financial domain has a rich set of problems, with com-
plex dynamics arising from interactions between hetero-
geneous agents, but doesn’t have a corresponding suite of
simulators that could be used to conduct research. Our ob-
jective is to bridge that gap and develop simulators that can
be used to test and develop learning algorithms for markets.
Specifically, in this paper, we focus on a particular type
of market - a dealer market (Pagano & Röell, 1992) - and
demonstrate the use of agent based simulation to model its
dynamics.

A dealer market has 2 types of agents: market-makers and
investors. In an electronic dealer market, market makers
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Figure 1. Dealer market and exchange

stream prices at which they are willing to buy and sell as
a function of trade size. They act as intermediaries in the
market, carrying the inventory they accumulate from trades
and managing the resulting risk. Investors use this facil-
ity to execute trades that are necessary to implement their
investment strategies. These markets are characterized by
direct, bilateral interactions between market makers and
investors that are visible only to the parties involved in the
interaction. In contrast, in auction markets (e.g. exchanges)
the participating agents submit anonymous orders to a limit
order book which is public (Huang & Stoll, 1996), (Pagano
& Röell, 1996).

Our goal is to build a multi-agent simulation of a dealer
market that can be used to learn optimal policies, in particu-
lar for market maker agents, and study emergent outcomes
through simulation.

An agent based simulation allows us to study scenarios with
heterogeneous agents who have varied incentives and poli-
cies. This is important in a dealer market where there are a
small number of agents (∼1000s), and the direct interaction
makes it valuable for an agent to learn about the other agents’
beliefs and preferences. For example, market makers can
strategically customize pricing for different investors. A
market maker agent could also seek to capture specific por-
tions of the investor trade flow by being marginally more
competitive than the next best market maker in the segment.

Previous works on building agent based simulations of fi-
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nancial markets have largely focused on continuous double
auction (i.e. limit order) markets (Wah et al., 2017), (Das,
2008), (Palmer et al., 1994). Among the works that consider
dealer markets, the focus has been on studying emergent
price formation (Das*, 2005) and factors that impact it,
e.g.news (Izumi & Ueda, 1999). In contrast, our focus is on
studying price differentiation and risk management (hedg-
ing), and the interplay between these two important aspects
of a market maker’s overall strategy in a dealer market.

Our key contribution in this paper is the formulation of an
electronic dealer market as a multi-agent simulation, with
a comprehensive structure of rewards for market makers.
Our experiments show that the agent based simulation is
able to produce effects that are commonly observed in these
markets - variations in price sensitivity of investors and
benefits of a diverse trade flow for market makers. We also
implement a realistic hedging policy based on (Almgren &
Chriss, 2001) and study its effect on market maker rewards;
this study further validates our reward formulation.

2. Electronic Dealer Markets
In this section, we formulate the problem of modeling elec-
tronic dealer markets in a multi-agent setting. We define
(i) the agents in an electronic dealer market, and (ii) their
incentive structures and interactions.

2.1. Market Makers and Investors

In an electronic dealer market, a market maker agent contin-
uously streams prices to all market participants, including
other market makers. However, it can provide differentiated
pricing depending on the participant. We consider a partic-
ular mechanism of price differentiation called tiering. In
tiering, the market maker assigns each market participant
to one of a fixed number of tiers - each tier then receives
a different pricing from the market maker. The price (or
spread) for each tier is also a function of the trade size, with
a higher price for larger trades, which carry a greater risk.

Unlike exchanges or auction markets, in a dealer market
the price at which a trade is executed is only known to the
parties involved in the trade. We consider a dealer market
where no information about executed trades, anonymized
or delayed, is published and made available to all market
participants.

How then, do the market makers decide on how to set their
pricing curves? The market makers source reference pricing
information from an exchange limit order book (See Ap-
pendix A.1 for details). We assume that the trading activity
in the dealer market does not impact exchange prices. This
is a highly simplified view of the interaction and dependence
between the dealer and exchange markets, but it lets us fo-
cus on our primary objective to study price differentiation

Figure 2. Sample price curves for different tiers

and risk management in a dealer market.

In transacting with other participants, the market maker
accumulates a net position e.g. if the market maker buys
$100mm and sells $50mm, it results in a net position of
$50mm for the market maker. This net position exposes the
market maker to the risk of fluctuaons in the market price
of the underlying asset. The goal of the market maker is to
optimally manage the risk exposure from its net position
while earning revenue from trades with investors.

Some of the risk exposure is organically mitigated by in-
vestor trades in the opposite direction - this effect is com-
monly known as internalization. However, the market
maker could also choose to actively reduce risk by hedging
- trading with another market maker and incurring a cost. In
general, the market maker has to trade off the risk associated
with carrying a net position over a period of time against
the cost of reducing the risk by actively hedging.

Investor agents receive prices from all market makers and
can choose the market maker to execute with; they are
primarily trying to minimize their trade execution costs and
typically select the market maker with lowest price.

We assume that each investor has an internal investment
process that generates trades. Investors vary in the size,
frequency, time horizon and sophistication of their trades.
The heterogeneity of investors, coupled with price differen-
tiation by market makers, implies that not all investors have
access to the same level of liquidity in this market and that
we are likely to see a range of price sensitivities.

2.2. Definition of Agents: Observations, Actions,
Rewards

We consider a market with M market maker agents, N
investors and K tiers (we assume for simplicity of notation
that all market makers use the same number of tiers to
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differentiate price). We assume there is a single underlying
asset being traded in the market. We use the following
definitions:

Notation

• Let ṽi,j,t be the trade executed by agent i with agent
j at time t, from agent i’s perspective (i.e. ṽi,j,t =
−ṽj,i,t). Buys are positive; sells are negative.

• ṽi,t denotes the (sum of) trades executed by agent i at
time t; i.e. ṽi,t :=

∑
j ṽi,j,t.

• For simplicity, the trade size is represented by v, where
v = |ṽ|.

• ui,j,t denotes the tier assigned by market maker i to
participant j at time t; ui,j,t ∈ {0, ..,K − 1} where K
is the number of tiers and u = 0 denotes the best tier.

• Pt denotes the reference mid-price from the exchange
(See Appendix A.1 for details)
• Sref,t(v) denotes the market (exchange) reference

price curve at time t, where v is the trade size
• si,t(v, u) denotes the price curve(s) streamed by mar-

ket maker i at time t; it is a function of trade size v and
(discrete) tier u

By convention, both Sref,t and si,t are expressed relative
to the mid price Pt, and are also commonly referred to as
the spread. For example, the absolute price for executing
a trade of size v at price (or spread) Sref,t(v) would be
Sref,t(v) + Pt.

2.2.1. MARKET MAKER AGENT

We summarize below the state, action and rewards structure
for market maker agent i at time t.

State / Observations

• History of trades executed {ṽi,j,t′}t′<t,j 6=i.
• Net position zi,t =

∑
t′<t ṽi,t′

• Pricing from other market makers sj,t(v, uj,i,t) where
j ∈ {1, ..,M} and j 6= i

• Market reference price curve Sref,t(v)
• Market reference mid price Pt

Actions

• Tiering: Assign each market participant to a tier i.e.
determine ui,j,t for all j ∈ {1, ...,M + N} where
j 6= i

• Pricing: Determine price curve for each tier i.e.
si,t(v, u = k) for k ∈ {0, ..,K − 1}

• Hedging: Determine hedge trade vhedge to execute and
the market maker to execute with

Rewards

• Spread revenue: Positive rewards the market maker
directly earns from a trade with another participant.
For a trade of size v with participant j, the reward is

si,t(v, ui,j,t)∗v since the market maker charges a price
of si,t(v, ui,j,t)

• Position revenue: Additional rewards associated with
a trade which are driven by the market mid price fluc-
tuation between the time of trade t and the time the
market maker unwinds it (assumed to be a fixed time
t + tm). The position revenue for a trade ṽ at time t
is (Pt+tm − Pt) ∗ ṽ and added to the rewards at time
t+ tm. It could be positive or negative.

• Hedging cost: If the the market maker chooses to exe-
cute a hedging trade of size vhedge with market maker
j, it incurs a cost of sj,t(vhedge, uj,i,t) ∗ vhedge

• Risk cost: We also assume there is a risk cost which
penalizes the market maker for any adverse impacts
of market price movements on its net position. This is
computed as min(zi,t ∗ (Pt − Pt−1), 0).

2.2.2. INVESTOR AGENT

We summarize below the state, action and rewards structure
for investor agent j at time t. In this formulation, we assume
an investor has only one trade at each time step and executes
it immediately by picking a market maker to trade with.

State / Observations

• Trade to execute: trade size and direction
• Streamed prices from all market makers si,t(v, ui,j,t),
i ∈ {1, ...M}

• Market reference price curve Sref,t and mid price Pt

Actions

• Select a market maker to execute trade with

Rewards

• Execution cost: The investor incurs a cost in execut-
ing trade v with selected market maker i, which is
equal to the spread revenue earned by the market maker
si,t(v, ui,j,t) ∗ v

3. Simulation Design
The multi-agent formulation detailed above provides the
general specifications for how agents interact in a dealer
market, the information they observe and the rewards that
drive behavior. To simulate a specific instantiation of this
multi-agent system we also need to address the following
questions:

• What agent attributes distinguish individual agents?
How do we define a heterogeneous population of
agents using these attributes?

• What policies do agents follow (heuristic/learned) to
decide which action to take at each time step?

• How are exogenous inputs generated or sourced?
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For the simulations in this paper, we focus on (i) generating
a heterogeneous population of investors differentiated by the
trades they generate, and (ii) developing realistic baseline
(heuristic) policies for market maker agents. All investor
agents follow the same policy which is to select the market
maker with the lowest price for the trade they wish to exe-
cute. We describe, in the sections below, the methodology
used to generate investor trades and the heuristic policies
implemented for the market maker agents.

There are 2 exogenous inputs to our simulation - market
reference price curve Sref,t(v) and market mid price Pt.
For the simulations presented in this paper, we simulate the
exogenous inputs using the methodology described in the
Appendix A.1.

3.1. Trade generation process for investor agent

The trade generation process for an investor is specified
by probability distributions for trade size, direction and
arrival. At each time step, investor j has a trade arrive
with probability ptradej . We assume the trade size is log-
normally distributed with parameters (µtradej , σtradej ) and
that the investor buys with probability pbuyj . Thus the at-
tributes (ptradej , µtradej , σtradej , pbuyj ) together specify the
trade generation process for investor agent j.

We define sophisticated investors as those who are more
likely than chance to correctly predict direction of market
mid price Pt over next tm time steps (defined by an attribute
qj ∈ [0.5, 1)), resulting in negative Position revenue for the
market maker. In practice, we simulate these by using an
oracle that reveals the direction of price movement over the
next tm time steps to investor agent j with a probability de-
termined by qj . If the investor agent gets a look ahead from
the oracle, it adjusts its pbuyj for that time step accordingly;
otherwise the agent is equally likely to buy/sell.

3.2. Heuristic policies for market maker agent

In our simulations, we define agent behaviors through heuris-
tic policies which use the agent’s observations to determine
the action to take at each time step. These heuristic policies
allow us to study the emergent dynamics of the system and
validate that we are able to observe known cause-effect cy-
cles under reasonable assumptions of agent behavior. Our
goal is to eventually use the simulator as a multi-agent en-
vironment to learn policies for one or more agents; the
heuristic policies provide both baselines for comparison
and a way to specify validated behaviors for non-learning
agents.

The market maker has 3 policy components which determine
how it sets the pricing curve for each tier (pricing policy),
how it assigns each market participant to a tier (tiering

policy) and how it hedges the risk exposure resulting from
trades (hedging policy).

3.2.1. TIERING POLICY

The tiering policy specifies how the market maker assigns
each market participant to a tier. This is typically based on
a tiering metric ψ which captures how lucrative it is for the
market maker to trade with a specific participant. Looking at
the reward structure for the market maker agent, Spread and
Position revenue are directly attributable to trading activity
with a specific participant and are a good heuristic measure
of the participant’s profitability.

We define the revenue from a trade to be the sum of its
spread and position revenue and consider two related tiering
metrics for a participant: (i) Average Yield which is the
average revenue per unit trade volume, and (ii) Revenue rate
which is the average revenue per time step.

The yield for a trade is computed by normalizing its revenue
by the size of the trade. The average yield metric for a par-
ticipant is an exponentially weighted average of the yields
for its past trades. The revenue rate for the participant is
then calculated as the product of the average yield and the
average volume traded by the participant per time step.

At each time step t, the tiering policy for market maker i is
computed as follows:

• Update the tiering metric ψj,t for each participant j
based on trades between the participant and market
maker i

• Sort {ψj,t}j=1:M+N,j 6=i into K quantiles or tiers; the
highest quantile corresponds to the best tier.

3.2.2. PRICING POLICY

For each market maker, the pricing curve s(v, u) represents
the price streamed to investors of tier u to enter a trade of
size v (we remind the reader that this price is expressed
relatively to the mid price Pt). The pricing policy takes as a
single input the reference price curve of the underlying asset
Sref,t(v), which is known by all participants and specifies
the cost of trading a size v on the reference exchange, and
generates a pricing curve s(v, u) for each tier u by applying
a deformation α and a tiering penalty stier(u) as follows:

s(v, u) := Sref (0)

(
Sref (v)

Sref (0)

)α
+ stier(u).

The reference market spread s0 is the difference between
the best ask and bid prices on the reference exchange (cf.
Appendix A.1). The half reference market spread Sref (0) =
1
2s0 represents the additional cost of trading at the best ask
(resp. bid) vs. trading at the mid price on the exchange,
and can be seen as a base value for s(v, u). This base value
is then scaled by the quantity Sref (v)

Sref (0)
that represents the
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Figure 3. Sample price curves for different values of α

exchange’s volume penalty factor capturing the fact that
trading large sizes is done at a higher spread. The market
maker further modulates this volume penalty factor via the
coefficient α. Finally, it is assumed that the tier penalty
applied by the market maker is of the form stier(u) =
δtier ·u, where δtier is a constant that doesn’t depend on the
tier u. α and δtier are the 2 parameters driving the pricing
policy and may vary among market makers.

We build on the analysis in (Bouchaud et al., 2002) to derive
Sref (v) as a function of the reference spread s0 and the
total liquidity available in the exchange (See Appendix A.1
for details). The total liquidity available in the exchange is
chosen empirically so that it is always greater than the max-
imum trade size generated by the investors and maximum
absolute net positions of the market makers. It can alter-
natively be seen as the probability that the market maker
is able to trade at the best ask (resp. bid). The reference
market spread s0 is simulated, at each time step, as a normal
random variable of mean 0.015% and stdev 0.005% (we
further enforce s0 to be no less than 0.002% and no more
than 0.05%).

3.2.3. HEDGING POLICY

When the market maker agent has a non zero net position
at time t, he needs to hedge so as not to be impacted by the
future underlying market price move (Pu)u≥t. The latter
is uncertain, which could generate losses for the market
maker if it takes no action. If the market maker is long
(i.e. its net position is positive), it will sell to reduce its net
position, otherwise it will buy. For the market maker agent
i, the price at which he can hedge a size vhedge is given
by c(vhedge) := minj 6=i sj,t(vhedge, uj,i,t). The heuristic
approach we choose for hedging is inspired by the paper
(Almgren & Chriss, 2001): since c(vhedge) is an increasing
function of trade size vhedge, the market maker needs to
make a trade-off between:

Figure 4. Impact of hedging on market maker’s net position,
Nmax = 5hrs - 1 Timestep value=15mins

• hedging immediately a large quantity, in which case
he will pay a high price for trading a large volume (cf.
hedging cost term of the market maker’s reward), but
on the other hand he will be less subject to the mid
price move (cf. risk cost term of the market maker’s
reward).

• hedging immediately a small quantity, in which case
he will pay a low price for trading a low volume, but
on the other hand he will be more subject to the mid
price move.

At each time t, the goal for the market maker agent i is to
model the above trade-off and derive an optimal size vhedge
to hedge. We consider the following inputs of the strategy:

• zi,t is the net position of market maker i at time t.
• c(v) := minj 6=i sj,t(v, uj,i,t) is the price at which mar-

ket maker i can hedge a size v.
• we assume that the mid price increment over the time

period [tk, tk+1) is equal to σZk, where Zk ∼ N(0, 1)
are i.i.d., and σ is market maker i’s estimation of the
mid price volatility over 1 time period.

Let Nmax be the maximum number of time periods that
the market maker agent gives himself to completely hedge
its position. He can decide to hedge everything sooner
than Nmax, but not later. Nmax is typically of the order
of a few hours. Let xk be the fraction of zi,t that is being
hedged at time tk, and yk be the remaining fraction of zi,t
on [tk, tk+1) (k = 0..Nmax − 1). xk and yk are linked by
xk = yk−1−yk, where y−1 := 1 for notational convenience
and yNmax−1 = 0 by definition of Nmax. The total cost C
(renormalized by zi,t) of such a strategy is given by:

C =

Nmax−1∑
k=0

xkc(zi,txk)− σ
Nmax−1∑
k=0

ykZk

C is a normal random variable with mean
E(C) =

∑Nmax−1
k=0 xkc(zi,txk) and variance

var(C) = σ2
∑Nmax−1
k=0 y2k, and the corresponding Value-

at-Risk at confidence level p ∈ [0, 1], V aRp := F−1C (1−p)
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is given by:

V aRp = E(C) + γ
√
var(C)

where γ := N−1(1 − p), F−1C (resp. N−1) denotes the
inverse cumulative distribution function of C (resp. inverse
normal c.d.f.). V aRp has the practical meaning that the
cost C will always be lower than V aRp with a probability
1− p. According to (Almgren & Chriss, 2001), a strategy
(xk) is efficient if - for fixed p - it minimizes V aRp. In our
context, γ is a parameter that represents the risk-aversion of
the market maker:

• γ small (∼ 0) means the market maker does not at-
tribute importance to the mid price move and as a
consequence is not risk averse.

• γ large (∼> 2) means the market maker is worried
about the mid price move and as a consequence is very
risk averse.

Strategy: once γ and Nmax have been chosen by the mar-
ket maker, he first solves for the schedule (xk) that min-
imizes V aRp, and then take the amount to hedge for the
current time period to be vhedge = zi,tx0.

In figure 4 we show, for one simulation, the impact of γ on
a market maker’s net position. As expected, the higher γ,
the closer the net position is to 0.

4. Experiments
We conducted experiments with 10 investors and 2 market
makers. Every time step in the simulation corresponds to
15 min. We simulate a 24-hour, highly liquid market. The
10 investors had µtrade ranging from 0.5 to 7 and trade
frequencies ranging from every 2 hours to 2 days. All
investors are equally likely to buy/sell at each time step.

We conducted two validation experiments which test
whether we observe a variation in price sensitivity among
investors and the internalization effect described in Section
2.1. We also varied the parameters of the heuristic hedging
policy to study the effect on market maker rewards.

4.1. Investor price sensitivity

In this experiment, we tested the following hypothesis:

Hypothesis: The heterogeneity of investors, combined with
price differentiation by market makers in a non-anonymous
market, implies that investors will exhibit a range of sensi-
tivities to change in pricing.

Metric: We define price sensitivity in the following manner:

Market share: Market share for market maker iwith investor
j is defined as the percentage of investor j’s trades that are
executed with market maker i.

Figure 5. Investor Price Sensitivity - Fixed Tiers. Larger tiers have
higher pricing. Comparing with Table 2, we see that the market
share is 100 % when market maker 2 tiers the investor better than
the competitor, falls to 50% when the tiering is equal, and goes to
0 when it is worse.

Price Sensitivity: Price sensitivity of investor j to market
maker i’s pricing is defined as the change in market share
when market maker i changes the tier for investor j from k
to k + 1; a larger value of k indicating a higher price.

Experiment Design: In each simulation run, market maker
2 picks a particular investor j and places it in tier k for the
length of the simulation. We ran 300 simulations for each
combination of investor and tier and measured the market
share of the investor with market maker 2. To isolate the
effect of tier changes, both market makers have the same
pricing curve for a given tier. We also set all investors to
have the same trade frequency so that the only investor
attribute that impacts its tiering is trade size.

Results: In our first set of experiments, both market makers
assign a fixed tiering to investors that doesn’t change based
on investor trades. As seen Table 2, the investors with larger
trade sizes, e.g. investor 5 and 7, are tiered well by the
competing market maker. Hence, as market maker 2 starts
increasing the tier for these investors, it loses market share
rapidly (Figure 5). In contrast, for the smaller investors
(investor 0 and 1), the market maker can increase the tier
several steps before seeing a drop off in market share.

In our second set of experiments, the market makers used
the tiering policy based on average revenue per unit time
described in Section 3.2.1. The tiering from the competing
market maker is now time-varying and depends on investors
trades. However, we observe a similar effect (Figure 6),
where the larger investors are more sensitive to changes in
tiering than smaller investors.

Discussion: The above experiments validate our hypothesis
of varied price sensitivity among investors.
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Table 1. Summary of investors in Figure 5 - average trade size of
investors and tier with the competing market maker

INVESTOR ID AVG. TRADE SIZE TIER

INVESTOR 0 0.5 4
INVESTOR 1 1.0 4
INVESTOR 5 3.5 2
INVESTOR 7 4.5 1

Figure 6. Investor Price Sensitivity - Tiering policy based on aver-
age revenue per unit time. Bars indicate standard deviation over
300 simulations.

• Price sensitivity of an investor depends on two factors
(i) attributes of the investor (ii) tiering policies of other
market makers

• The experiment above could be considered as a brute
force exploration that reveals information about com-
petitor tiering policies by measuring the price sensitiv-
ity of investors. A market maker agent could employ
smarter policies that learn to infer competitor policies
and do more efficient exploration using the observa-
tions available to it (the market maker doesn’t actually
observe market share with a specific investor).

4.2. Internalization Effect

Hypothesis: As a market maker captures a larger proportion
of trades across all investors, it is able to reduce its net
position organically because it sees a greater diversity of
investor trades. This is called the internalization effect. It is
beneficial for the market maker because it lowers risk and
hedging costs.

Metric: We measure the internalization effect for a market
maker by looking at the net position at time t normalized by
the total volume of trades up to that point in time.

|zt|∑t
t′=0 vt′

(1)

Figure 7. Internalization Effect

where vt′ is total volume of trades executed by the market
maker at time t′. This internalization metric lies between 0
and 1 - where 0 denotes perfect internalization with stream
of trades that perfectly cancel each other out, and 1 denotes
no internalization i.e. all trades are in the same direction
(buy/sell). In our experiments, we compute the average of
this metric over multiple simulations.

Experiment Design: To test the above hypothesis, we com-
pared 2 scenarios: (i) both market makers have the same
pricing curve and hence 50% market share (ii) market maker
2 has a strictly lower pricing curve and captures 100% mar-
ket share. For both scenarios, we ran 1000 simulations. To
isolate the effect of the price curve shift, and the resulting
increase in trade flow, we considered the simplified case
where both market makers do not tier. Also both market
makers do not hedge - so any reduction in net position is
purely due to the internalization effect.

Results: Figure 7 shows the internalization metric at each
time step, averaged over 1000 simulations. As expected, the
internalization metric is lower with a 100% market share vs
50%. However, in both scenarios there is internalization - it
is just slower with lower market share.

Since all investor agents in our population are equally likely
to buy/sell, any portion of the trade flow will show an inter-
nalization effect. However, if the internalization is too slow
it will not be useful because the market maker is exposed to
a large risk for a longer period of time, and will accordingly
incur a large cost of risk.

Discussion: While the experiment above confirms that we
do observe the internalization effect in our agent based simu-
lation, we need further experiments to test with a larger pop-
ulation of investor agents. We would also like to study the
effect of different investor populations and pricing/tiering
policy. A smart market maker could use pricing and tiering
as a tool to shape its investor flow in a way that increases
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Table 2. Internalization metric at 96 time steps (1 day)

INTERNALIZATION 50% 100%
METRIC SHARE SHARE

75TH PERCENTILE 0.28 0.20
50TH PERCENTILE 0.16 0.11
25TH PERCENTILE 0.08 0.06

diversity of trade flow and the internalization benefit, while
maintaining market share.

4.3. Impact of risk aversion on market maker costs

Figure 8. Effect of risk aversion γ on costs: Low volatility scenario.
Rewards shown are cumulative and only include hedging and risk
costs. Mid-price Pt is a geometric brownian motion with volatility
10%.

Figure 9. Effect of risk aversion γ on costs: High volatility sce-
nario. Rewards shown are cumulative and only include hedging
and risk costs. Mid-price Pt is a geometric brownian motion with
volatility 30%.

As described in Section 3.2.3, the hedging policy for a
market maker depends on the risk aversion parameter γ and
the maximum hedge time Nmax. The market maker hedges
more or less aggressively depending on the level of risk
aversion and the maximum hedge horizon he gives himself
to entirely hedge his position. Note that in the absence
of any cost or penalties for carrying risk, there is actually
no incentive for the market maker to hedge (Nmax very

large, γ = 0), since any hedging would only serve to incur
hedging costs without impacting the risk cost (zero).

In our reward design, the risk cost penalizes the market
maker for any adverse impacts of the mid-price (Pt) move-
ments on its net position. Ideally, a smart market maker
would learn the optimal risk aversion γ and Nmax from the
rewards; however, these are fixed parameters in our heuristic
hedging policy.

In this experiment, we fix Nmax = 5hrs. We empirically
study the effect of varying γ on the market maker’s total
costs - hedging and risk costs - under high and low mid-price
volatility.

In the limiting case where the mid-price has a volatility
of 0, there should be no incentive for the market maker
to hedge anything since there would be no risk in holding
the underlying asset. On the other hand, as the mid-price
volatility grows, the optimal behavior should tend to γ =
+∞ as it would become too risky to hold a non zero net
position. In the low volatility scenario (Figure 8), a low risk
aversion of 0-0.25 indeed produces the lowest cumulative
costs, and risk aversions greater than 1 produce the highest
costs as expected. In contrast, in the presence of higher mid-
price volatility (Figure 9), a risk aversion of 0.5 produces the
lowest cumulative costs, and the highest costs are produced
by the low risk aversions of 0-0.05. This is because the
increased cost of hedging (with higher γ) is outweighed by
the reduction in the high risk costs generated by the large
mid-price movements.

5. Conclusions and Future Work
In this paper, we formulate a multi-agent simulation of
a dealer market, with a detailed reward structure for the
market maker agent. We show, through our experiments,
that our simulation model is able to produce (i) a variation in
price sensitivity among investors, and (ii) an internalization
effect for market makers through the netting of trade flows,
when its market share increases. We also vary the risk
aversion parameter for our heuristic hedging policy and
show that our reward structure drives expected results in
different market scenarios.

Our experiments in this paper demonstrate the nuanced
interplay between price differentiation and risk management
policies for market maker agents, which make the joint
learning of optimal policies an interesting learning problem
for future research. To make our simulation model a more
robust platform for learning, we plan to build on the work
presented in this paper to (i) scale up the simulation model
to thousands of agents, and (ii) use real data to calibrate
populations of agents.



Multi-Agent Simulation for Pricing and Hedging in a Dealer Market

References
Almgren, R. and Chriss, N. Optimal execution of portfolio

transactions. Journal of Risk, 3:5–39, 2001.
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A. Appendix
A.1. Simulation of market reference price curve

The market reference price curve Sref (v) is assumed to be
known by all participants and specifies the cost of trading
a size v on the reference exchange (relatively to the mid
price), which operates like a limit order book (cf. figure
10). Such a structure is characterized by 2 lists of 2-tuples
(nak, ak), (n

b
k, bk), k ≥ 0, where:

• (orders available on the ask side) one can buy at most a
size of nak at price level ak, where (ak) is an increasing
sequence and a0 is called the ask price, i.e. the lowest
price at which you can buy (but only at most a size of
na0).

• (orders available on the bid side) one can sell at most a
size of nbk at price level bk, where (bk) is a decreasing
sequence and b0 is called the bid price, i.e. the highest
price at which you can sell (but only at most a size of
nb0).

Figure 10. Illustration of a LOB as displayed in (Cont & Mueller,
2019)

For example, if you want to buy a total size of v, the related
cost will be given by:

(v −
n∗−1∑
k=0

nak)an∗ +

n∗−1∑
k=0

akn
a
k

n∗ := inf{n : v <

n∑
k=0

nak}

The reference market spread is defined as s0 := a0 − b0,
and the reference market mid price is given by Pt = a0+b0

2 .
In the following we will assume that Sref (v) is the same on
the bid and ask side, so we continue the reasoning with the
ask side.

In order to derive a realistic behavior for Sref (v), we as-
sume that in the limit order book, all trades have unit size,
are independent, and arrive at price level s0

2 + x with a
probability density function f(x) ∝ ( s02 + x)−λ, λ = 1.6,
similarly to the analysis done in (Bouchaud et al., 2002).
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Note that we work with a continuous price-scale s0
2 +x, x ≥

0 for analytical tractability. After a total of vmax trades
have arrived (vmax then represents the total market liquid-
ity on the ask side), we denote V (x) the number of trades
at price level < x. We have immediately that V (x) is dis-
tributed according to a binomial distribution with parameters
vmax and p(x) :=

∫ x
0
f(y)dy, from which we derive that

E(V (x)) = vmaxp(x).

In order to buy a trade size v, the related additional cost c(v)
with respect to the reference market mid price is given by:

c(v) =

∫ x∗

0

(
s0
2

+ x)dV (x),

where x∗ is implicitly given by:

V (x∗) = v.

We approximate x∗ by the quantity x̃∗ that solves
E(V (x̃∗)) = v, i.e. x̃∗ represents the average price level at
which we have to go up to when buying a trade size v. From
there we derive the approximated expected cost:

Sref (v) = E(c(v)) ≈ E

[∫ x̃∗

0

(
s0
2

+ x)dV (x)

]

= vmax

∫ x̃∗

0

(
s0
2

+ x)f(x)dx,

where we have used that dE(V (x)) = vmaxf(x)dx. Using
the specific form of f , we get immediately that:

Sref (v) = −
s0
2

1

ṽ
ln(1− ṽ) if λ = 2

Sref (v) =
s0
2

ω

ṽ
(1− (1− ṽ) 1

ω ) if λ 6= 2, λ > 1

ṽ =
v

vmax
∈ [0, 1), ω =

λ− 1

λ− 2


